林业科学 ›› 2024, Vol. 60 ›› Issue (3): 10-21.doi: 10.11707/j.1001-7488.LYKX20230129
• 前沿与重点:宁夏枸杞栽培生理和果实品质 • 上一篇 下一篇
冯学瑞1,马亚平2,刘佳欣2,陆晖2,李运毛1,曹兵2,*
收稿日期:
2023-04-02
出版日期:
2024-03-25
发布日期:
2024-04-08
通讯作者:
曹兵
基金资助:
Xuerui Feng1,Yaping Ma2,Jiaxin Liu2,Hui Lu2,Yunmao Li1,Bing Cao2,*
Received:
2023-04-02
Online:
2024-03-25
Published:
2024-04-08
Contact:
Bing Cao
摘要:
目的: 探究CO2浓度升高对宁夏枸杞果实发育过程中碳水化合物积累的影响,为揭示枸杞果实品质形成对气候变化的响应提供参考。方法: 以宁夏枸杞‘宁杞1号’为试验材料,采用开顶气室模拟控制系统进行CO2浓度升高处理(800±20 μmol·mol?1),以自然环境CO2浓度(400±20 μmol·mol?1)为对照,处理60天后收集幼果期、青果期、转色期、红果期的根、茎、叶和果实样品,测定其糖组分含量及糖代谢相关酶活性和基因表达。结果: 1) CO2浓度升高处理可促进果实发育过程中半乳糖、蔗糖和总糖的积累,红果期半乳糖、果糖、蔗糖、总糖含量较对照分别提升35.71%、23.18%、19.57%和12.23%(P<0.05)。2) CO2浓度升高处理下,宁夏枸杞发育期根、茎、叶和果实组织中苹果酸合成酶(LbMS)、中性转化酶(LbAI)、蔗糖磷酸合成酶(LbSPS)及蔗糖合成酶(LbSS)活性均显著升高(P<0.05),α-半乳糖苷酶(LbGALA)活性在果实中大于叶;4个时期果实中α-半乳糖苷酶活性分别较对照显著增加19.54%、36.68%、21.00%、24.93%,蔗糖合成酶和蔗糖磷酸合成酶在叶中的活性显著高于其他组织;果实成熟期LbGALA和LbNI基因表达量显著上调。3) CO2浓度升高处理下,基因LbGAE、LbNI、LbSPS在茎中显著上调,LbGALA在果实中显著上调,LbMS、LbAI在根中显著上调,LbSPS、LbSS在叶中表达量显著上调。结论: CO2浓度升高促进宁夏枸杞糖代谢相关基因LbSPS、LbAI、LbGAL等的表达,提高酸转化酶、中性转化酶等酶活性,从而促进夏果果实中半乳糖、蔗糖和总糖的积累。
中图分类号:
冯学瑞,马亚平,刘佳欣,陆晖,李运毛,曹兵. CO2浓度升高处理下宁夏枸杞糖代谢相关酶及基因表达分析[J]. 林业科学, 2024, 60(3): 10-21.
Xuerui Feng,Yaping Ma,Jiaxin Liu,Hui Lu,Yunmao Li,Bing Cao. Analysis of Enzyme and Gene Expression Related to Sugar Metabolism in Lycium barbarum under Elevated CO2 Concentration Treatment[J]. Scientia Silvae Sinicae, 2024, 60(3): 10-21.
表1
荧光定量PCR所用引物的序列信息"
序列号 Accession No. | 基因名称 Gene name | 引物方向 Primer direction | 引物序列Primer sequence(5'–3') |
Actin | 正向 Forward | CCATCTACGAGGGTTACGCTTTG | |
反向 Reverse | AGTCAAGAGCCACATAGGCAAGC | ||
MH025913.1 | LbGALA | 正向 Forward | TGCTGCTATGGTGCTGCTTGTG |
反向 Reverse | GCGTTGGCTGTGGAGTTTGAATC | ||
MH025912.1 | LbMS | 正向 Forward | TGAGGCAGCATTGGAACTTGTAAGG |
反向 Reverse | AGGTGCATTGGTCATGTTACTGGTG | ||
MH025911.1 | LbGAE | 正向 Forward | GCCGATTTCACTGTTTCAAGGTTCC |
反向 Reverse | TCCTGTGCTCTTTTCTGCTGTATCC | ||
MN718198 | LbNI | 正向 Forward | TGGTGAGAGTGCGATAGGAAGAGTG |
反向 Reverse | GGCATTCAGGCATCTCAGACAAGG | ||
MN718197 | LbSPS | 正向 Forward | TGAAGGGTGCTGTCGAGGAA |
反向 Reverse | TTCCCGCTGGTGTAGGTGAT | ||
MN718196 | LbSS | 正向 Forward | ACCATTTCTCAGCCCAGTTTACGG |
反向 Reverse | GTCCAACGGTGTCCTTGCTTCC | ||
MN718195 | LbAI | 正向 Forward | AGCCGCACAGTTGGATATAGAAGC |
反向 Reverse | CTCCACTAGAACCGCAGTTGTAACC |
图3
CO2浓度升高对‘宁杞1号’蔗糖代谢相关酶活性的影响 每个子图中,9个小图显示:(左上)不同处理酶活性在各组织中的变化趋势;(中上)不同处理每个生长发育期的变化趋势;(右上)各处理酶活性的箱线图;(中左)不同发育期各组织的变化趋势;(中)各发育期酶活性的箱线图;(中右)不同发育期各处理的变化趋势;(左下)各组织酶活性的箱线图;(中下)不同组织各发育期的变化趋势;(右下)不同组织各处理酶活性的变化趋势。不同小写字母a、b、c、d表示同一处理各发育期在0.05水平上差异显著。YF:幼果期,GF:青果期,CF:转色期,RF:红果期,CK:自然环境CO2浓度处理,TR:CO2浓度升高处理。"
图4
CO2浓度升高对‘宁杞1号’3种半乳糖代谢相关酶活性的影响 每个子图中,9个小图显示:(左上)不同处理酶活性在各组织中的变化趋势;(中上)不同处理每个生长发育期的变化趋势;(右上)各处理酶活性的箱线图;(中左)不同发育期各组织的变化趋势;(中)各发育期酶活性的箱线图;(中右)不同发育期各处理的变化趋势;(左下)各组织酶活性的箱线图;(中下)不同组织各发育期的变化趋势;(右下)不同组织各处理酶活性的变化趋势。不同小写字母a、b、c、d表示同一处理各发育期在0.05水平上差异显著。YF:幼果期,GF:青果期,CF:转色期,RF:红果期,CK:自然环境CO2浓度处理,TR:CO2浓度升高处理。"
图6
CO2浓度升高对‘宁杞1号’果实糖分、糖代谢酶及其基因的相关性分析 a. 4个发育时期果实中的糖组分含量之间以及果实中的糖组分含量与果实中基因表达量之间的相关性分析;b. 不同时期不同组7个与糖代谢相关基因表达量 之间以及糖代谢相关酶活性与基因表达量之间的相关性分析。方框颜色代表正负相关系数,大小代表相关程度,连线宽度(Mantel’s r)代表mantel检验的相关性,连线颜色(Mantel’s P)代表统计显著性,** P<0.01,* P<0.05。YF:幼果期,GF:青果期,CF:转色期,RF:红果期,Mantel Test 是对两个矩阵进行相关性分析,如图a中YF、GF、CF、RF 4个点分别表示幼果期、青果期、转色期和红果期7个糖代谢相关基因在果实中的表达量;图b中左边根、茎、叶、果4个点分别表示根、茎、叶和果中7个与糖代谢相关的酶活性。a. Correlation analysis between the content of sugar components in fruits at four developmental stages and between the content of sugar components in fruits and the gene expression in fruits. b. Correlation analysis between the expression of 7 genes related to sugar metabolism in different groups at different stages and between the activity of enzymes related to sugar metabolism and gene expression."
曹 兵, 宋培建, 康建宏, 等. 大气CO2浓度倍增对宁夏枸杞生长的影响. 林业科学, 2011, 47 (7): 193- 198.
doi: 10.11707/j.1001-7488.20110730 |
|
Cao B, Song P J, Kang J H, et al. Effect of elevated CO2 concentration on growth in Lycium barbarum. Scientia Silvae Sinicae, 2011, 47 (7): 193- 198.
doi: 10.11707/j.1001-7488.20110730 |
|
郭芳芸. 2020. 大气CO2浓度升高对宁夏枸杞果实不同发育期糖分积累影响. 银川: 宁夏大学. | |
Guo F Y. 2020. Effects of elevated atmospheric CO2 concentration on carbohydrate accumulation of different fruit development phase in Lycium barbarm. Yinchuan: Ningxia University. [in Chinese] | |
哈 蓉, 马亚平, 曹 兵, 等. 2019. 模拟CO2浓度升高对宁夏枸杞营养生长与果实品质的影响. 林业科学, 55(6): 28−36. | |
Ha R, Ma Y P, Cao B, et al. 2019. Effects of simulated elevated CO2 concentration on vegetative growth and fruit quality in Lycium barbarum. Scientia Silvae Sinicae, 55(6): 28−36. [in Chinese] | |
哈 蓉. 2019. CO2浓度升高对宁夏枸杞糖分积累与主要活性成分含量的影响. 银川: 宁夏大学. | |
Ha R. 2019. Effects of elevated CO2 concentration on sugar accumlation and components in Lycium barbarm. Yinchuan: Ningxia University. [in Chinese] | |
贺 琰, 孙艳丽, 赵芳芳, 等. 外源油菜素内酯处理对‘美乐’葡萄果实糖代谢的影响. 园艺学报, 2022, 49 (1): 117- 128. | |
He Y, Sun Y L, Zhao F F, et al. Effect of exogenous brassinolides treatment on sugar metabolism of merlot grape berries. Acta Horticulturae Sinica, 2022, 49 (1): 117- 128. | |
金奖铁, 李 扬, 李荣俊, 等. 大气二氧化碳浓度升高影响植物生长发育的研究进展. 植物生理学报, 2019, 55 (5): 558- 568. | |
Jin J T, Li Y, Li R, et al. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development. Plant Physiology Communications, 2019, 55 (5): 558- 568. | |
刘毓璟, 张雁南, 曹 兵. 增施CO2对宁夏枸杞夏果秋果蔗糖代谢酶活性的影响. 西北林学院学报, 2016, 31 (4): 44- 47,105.
doi: 10.3969/j.issn.1001-7461.2016.04.08 |
|
Liu Y J, Zhang Y N, Cao B. Effects of hight atmospheric CO2 concentrations on activities of sucrose metabolism-related enzymes in Lycium barbarum fruit. Journal of Northwest Forestry University, 2016, 31 (4): 44- 47,105.
doi: 10.3969/j.issn.1001-7461.2016.04.08 |
|
李国辉, 崔克辉. 氮对水稻叶蔗糖磷酸合成酶的影响及其与同化物积累和产量的关系. 植物生理学报, 2018, 54 (7): 1195- 1204. | |
Li G H, Cui K H. The effect of nitrogen on leaf sucrose phosphate synthase and its relationships with assimilate accumulation and yield in rice. Plant Physiology Journal, 2018, 54 (7): 1195- 1204. | |
马亚平, 王乃功, 贾 昊, 等. 改进式开顶气室模拟CO2浓度控制系统性能分析. 地球环境学报, 2019, 10 (3): 307- 315. | |
Ma Y P, Wang N G, Jia H, et al. Evaluation of a modified open-top chamber simulation system on the study of elevated CO2 concentration effects. Journal of Earth Environment, 2019, 10 (3): 307- 315. | |
毛桂莲, 许 兴. 枸杞耐盐突变体的筛选及生理生化分析. 西北植物学报, 2005, 25 (2): 275- 280.
doi: 10.3321/j.issn:1000-4025.2005.02.011 |
|
Mao G L, Xu X. Studies on in vivo selection of salt-tolerant mutant of Lycium barbarum L. and its physiological and biochemical characteristics. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25 (2): 275- 280.
doi: 10.3321/j.issn:1000-4025.2005.02.011 |
|
潘 静. 2013. CO2浓度倍增对宁夏枸杞光合产物分配与果实品质的影响. 银川: 宁夏大学. | |
Pan J. 2013. Effects of doubled atmospheric CO2 concentration on photosynthesis product allocation and fruit quality in Lycium barbarm. Yinchuan: Ningxia University. [in Chinese] | |
陶 冶, 蔡 创, 韦 薇, 等. 大气CO2浓度升高对高、低响应水稻品种根系生长的影响——Face研究. 土壤, 2022, 54 (4): 763- 768. | |
Tao Y, Cai C, Wei W, et al. Effects of elevated atmospheric CO2 concentration on root growth of “strong” and “weak” response rice varieties: a Face study. Soils, 2022, 54 (4): 763- 768. | |
张士权, 米文精, 赵勇刚. 新疆杨、枸杞等耐盐碱树种叶绿素荧光特性分析. 东北林业大学学报, 2011, 39 (2): 31- 32, 37.
doi: 10.3969/j.issn.1000-5382.2011.02.010 |
|
Zhang S Q, Mi W J, Zhao Y G. Chlorophyll fluorescence characteristics of four saline-alkali tolerant tree species. Journal of Northeast Forestry University, 2011, 39 (2): 31- 32, 37.
doi: 10.3969/j.issn.1000-5382.2011.02.010 |
|
Aidar M, Martinez C A, Costa A C, et al. Effect of atmospheric CO2 enrichment on the establishment of seedlings of Jatobá, Hymenaea courbaril L. (Leguminosae, Caesalpinioideae). Biota Neotropica, 2002, 2 (1): 1- 10. | |
Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 2005, 165 (2): 351- 372.
doi: 10.1111/j.1469-8137.2004.01224.x |
|
Alberto F, Bignon C, Sulzenbacher G, et al. The three-dimensional structure of invertase (β-fructosidase) from thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. Journal of Biological Chemistry, 2004, 279 (18): 18903- 18910.
doi: 10.1074/jbc.M313911200 |
|
Dong J, Xu Q, Gruda N, et al. Interactive effects of elevated carbon dioxide and nitrogen availability on fruit quality of cucumber (Cucumis sativus L. ). Journal of Integrative Agriculture, 2018, 17 (11): 2438- 2446.
doi: 10.1016/S2095-3119(18)62005-2 |
|
Fabiyi T. 2020. Trends in atmospheric carbondioxide. National Oceanic and Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL). | |
Farrra J F, Wolliams M L. 1991. The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source‐sink relations and respiration. Plant, Cell & Environment, 14(8): 819-830. | |
Fitzgerald G J, Tausz M, O'Leary G, et al. Elevated atmospheric [CO2] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves. Global Change Biology, 2016, 22 (6): 2269- 2284.
doi: 10.1111/gcb.13263 |
|
Gu J H, Zeng Z, Wang Y R, et al. 2020.Transcriptome analysis of carbohydrate metabolism genes and molecular regulation of sucrose transport gene losut on the flowering process of developing oriental hybrid lily ‘sorbonne’ bulb: International Journal of Molecular Sciences. 21(9): 3092. | |
Guo X Q, Chen H J, Liu Y, et al. The acid invertase gene family is involved in internode elongation in Phyllostachys heterocycla cv. pubescens. Tree Physiology, 2020, 40 (9): 1217- 1231.
doi: 10.1093/treephys/tpaa053 |
|
Harunobo A, Farnsworth N R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (goji). Food Research International, 2011, 44 (7): 1702- 1717.
doi: 10.1016/j.foodres.2011.03.027 |
|
IPCC. 2021. Climate change 2021: the physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change.Cambridge: Cambridge University Press. | |
Ji X M, Van den Ende W, Van Laere A, et al. Structure, evolution, and expression of the two invertase gene families of rice. Journal of Molecular Evolution, 2005, 60 (5): 615- 634.
doi: 10.1007/s00239-004-0242-1 |
|
Khan N, Ali S, Zandi P, et al. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany, 2020, 52 (2): 355- 363. | |
Li S H, Li Y M, Gao Y, et al. Effects of CO2 enrichment on non-structural carbohydrate metabolism in leaves of cucumber seedlings under salt stress. Scientia Horticulturae, 2020, 265, 109275.
doi: 10.1016/j.scienta.2020.109275 |
|
Liu H J, Si C C, Shi C Y, et al. Switch from apoplasmic to symplasmic phloem unloading during storage roots formation and bulking of sweetpotato. Crop Science, 2019, 59 (2): 675- 683.
doi: 10.2135/cropsci2018.04.0253 |
|
Liu H, Cui B, Zhang Z. Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: a review. Food Research International, 2022, 159, 111408.
doi: 10.1016/j.foodres.2022.111408 |
|
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCt method. Methods, 2001, 25 (4): 402- 408.
doi: 10.1006/meth.2001.1262 |
|
Ma Y P, Cao B, Devi M J, et al. Characterization of gala (α-galactosidase) gene family and studying its response to elevated CO2 in Lycium barbarum. Environmental and Experimental Botany, 2023a, 208, 105270.
doi: 10.1016/j.envexpbot.2023.105270 |
|
Ma Y P, Devi M J, Reddy V R, et al. 2021a. Cloning and characterization of three sugar metabolism genes (LBGAE, LBGALA, and LBMS) regulated in response to elevated CO2 in goji berry (Lycium barbarum L.). Plants-Basel, 10(2): 321. | |
Ma Y P, Reddy V R, Devi M J, et al. 2019. De novo characterization of the goji berry (Lycium barbarium L.) Fruit transcriptome and analysis of candidate genes involved in sugar metabolism under different CO2 concentrations. Tree Physiology, 39(6): 1032-1045. | |
Ma Y P, Wang Z J, Li Y M, et al. 2023b. Fruit morphological and nutritional quality features of goji berry (Lycium barbarum L.) during fruit development. Scientia Horticulturae, 308:311155. | |
Ma Y, Xie Y, Ha Y R, et al. 2021b. Effects of elevated CO2 on photosynthetic accumulation, sucrose metabolism-related enzymes, and genes identification in goji berry (Lycium barbarum L.). Frontiers in Plant Science, 12: 643555. | |
Madhu M, Hatfield J L. Dynamics of plant root growth under increased atmospheric carbon dioxide. Agronomy Journal, 2013, 105 (3): 657- 669.
doi: 10.2134/agronj2013.0018 |
|
Mott K A. 1990. Sensing of atmospheric CO2 by plants. Plant, Cell & Environment, 13(7): 731-737. | |
Ni J G, Au M T, Kong H K, et al. 2021. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complementary Medicine and Therapies, 21(1): 212. | |
OECD. 2012. Oecd environmental outlook to 2050: the consequences of inaction. sourceoecd environment & sustainable development, volume 2012(3): 353-354. | |
Peñuelas J, Estiarte M. 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution, 13(1): 20-24. | |
Rubio-Asensio J S, Bloom A J. Inorganic nitrogen form: a major player in wheat and arabidopsis responses to elevated CO2. Journal of Experimental Botany, 2017, 68 (10): 2611- 2625. | |
Sanz-Sáez Á, Erice G, Aranjuelo I, et al. Photosynthetic down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa. Journal of Plant Physiology, 2010, 167 (18): 1558- 1565.
doi: 10.1016/j.jplph.2010.06.015 |
|
Shao X W, Gai D S, Gao D, et al. Effects of salt-alkaline stress on carbohydrate metabolism in rice seedlings. Phyton-International Journal of Experimental Botany, 2022, 91 (4): 745- 759. | |
Shimizu H, Fujinuma Y, Omasa K. 1996. Effects of carbon dioxides and/or relative humidity on the growth and the transpiration of several plants. Acta horticulturae, 440, 175−180. | |
Tarkowski L P, Tsirkone V G, Osipov E M, et al. Crystal structure of arabidopsis thaliana neutral invertase 2. Acta Crystallographica F-structural Biology Communications, 2020, 76, 152- 157.
doi: 10.1107/S2053230X2000179X |
|
Wuyuntanmanda, Han F X, Dun B Q, et al. 2022. Cloning and functional analysis of soluble acid invertase 2 gene (Sbsai-2) in sorghum. Planta, 255(1): 13. | |
Yan W, Wu X Y, Li Y N, et al. 2019. Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink. Frontiers in Plant Science, 10: 541. | |
Yamada K, Kojima T, Bantog N, et al. Cloning of two isoforms of soluble acid invertase of japanese pear and their expression during fruit development. Journal of Plant Physiology, 2007, 164 (6): 746- 755.
doi: 10.1016/j.jplph.2006.05.007 |
|
Yoon S Y, Han S H, Shin S J. The Effect of Hemicelluloses and Lignin On Acid Hydrolysis of Cellulose. Energy, 2014, 77, 19- 24.
doi: 10.1016/j.energy.2014.01.104 |
[1] | 马亚平,冯学瑞,高捍东,宋丽华,曹兵. 模拟CO2浓度和温度升高对宁夏枸杞果实品质形成的影响[J]. 林业科学, 2024, 60(3): 1-9. |
[2] | 米娟娟, 赵娟红, 李治刚, 包晗, 黄婷, 秦垦, 杨涓, 郑国琦. 宁夏枸杞果皮蜡质积累与气象因子的关系[J]. 林业科学, 2024, 60(3): 22-34. |
[3] | 赵娟红, 米娟娟, 李治刚, 包晗, 黄婷, 秦垦, 杨涓, 郑国琦. 宁夏枸杞果实性状和预处理对果实制干的影响[J]. 林业科学, 2024, 60(3): 35-44. |
[4] | 黄梦遥, 张润哲, 史策, 杨昊, 魏一凡, 张兆德, 祝琳, 宋连君, 聂立水, 王登芝. 不同施氮量和灌水水平下毛白杨林地土壤矿质氮动态[J]. 林业科学, 2023, 59(9): 45-54. |
[5] | 黄金莲,崔鸿侠,唐万鹏,胡琛,马致远,雷静品. 虫害对华山松人工林土壤酶活性及碳氮磷化学计量特征的影响[J]. 林业科学, 2023, 59(10): 128-137. |
[6] | 王娜,王佳茜,李国雷,李箐,朱琳,李田,刘文. 栓皮栎种子萌发出苗特征与生理生化变化[J]. 林业科学, 2022, 58(4): 1-10. |
[7] | 曹俐,王阳,杨蕴力,郑雨,王伟,刘桂丰,姜静. 转BpGLK裂叶桦生长变异、根际土壤酶活性及微生物群落组成[J]. 林业科学, 2022, 58(12): 21-31. |
[8] | 姚凯,吴沿友. 氟离子和碳酸氢根对构树幼苗生长和碳代谢的影响[J]. 林业科学, 2021, 57(6): 56-63. |
[9] | 谢云,郭芳芸,陈丽华,曹兵. 大气CO2浓度升高对宁夏枸杞根区土壤微生物功能多样性及碳源利用特征的影响[J]. 林业科学, 2021, 57(4): 163-172. |
[10] | 沈文静,张莉,刘来盘,方志翔,刘标. 转cry1Ac基因欧洲黑杨对赤子爱胜蚓生长发育和生殖的影响[J]. 林业科学, 2021, 57(12): 92-98. |
[11] | 梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响[J]. 林业科学, 2021, 57(10): 166-174. |
[12] | 任玉连,陆梅,曹乾斌,李聪,冯峻,王志胜. 南滚河自然保护区森林土壤酶活性对海拔升高的响应[J]. 林业科学, 2020, 56(4): 22-34. |
[13] | VuongThi Minh Dien,曾健勇,满秀玲. 樟子松天然林土壤碳氮含量与水解酶活性坡位差异及月动态[J]. 林业科学, 2020, 56(2): 40-47. |
[14] | 陶晨悦, 邵珊璐, 史文辉, 林琳, 汤祎磊, 应叶青. 氮沉降对干旱胁迫下毛竹实生苗生物量和保护酶活性的影响[J]. 林业科学, 2019, 55(9): 31-40. |
[15] | 哈蓉, 马亚平, 曹兵, 郭芳芸, 宋丽华. 模拟CO2浓度升高对宁夏枸杞营养生长与果实品质的影响[J]. 林业科学, 2019, 55(6): 28-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||