林业科学 ›› 2025, Vol. 61 ›› Issue (2): 1-11.doi: 10.11707/j.1001-7488.LYKX20240576
收稿日期:
2024-09-30
出版日期:
2025-02-25
发布日期:
2025-03-03
通讯作者:
迟德富
E-mail:1391403031@qq.com;chidefu@126.com
基金资助:
Received:
2024-09-30
Online:
2025-02-25
Published:
2025-03-03
Contact:
Defu Chi
E-mail:1391403031@qq.com;chidefu@126.com
摘要:
在全球气候变化背景下,森林生态系统常因本地或外来病虫害的干扰,而影响其物种组成、空间结构、生物多样性以及固碳释氧等功能。森林病虫害干扰对生态系统碳汇的影响主要集中在以下几个方面:1) 降低光合作用效率。当林木遭到病虫危害时,光合速率、气孔导度以及蒸腾作用等光合指标降低,与光合相关的基因下调,参与光合作用的暗反应能力也相应减弱,甚至会因干扰而受到抑制。2) 光合产物减少从而影响生态系统的地上和地下固碳能力。当光合产物减少时,林木自身会将体内的蔗糖重新分配以满足林木新陈代谢需求。林木的根系生物量、土壤自养呼吸能力以及地下碳的长期固存都会因光合产物减少而降低。3) 造成植物组织的损伤,影响宿主的生长、繁殖和生存,从而降低生物多样性、破坏森林结构进而减少功能冗余。4) 被病虫害干扰后的森林生态系统,其存活植物的生长能力以及微生物的分解能力受到长期影响,进而长时间改变森林的固碳能力和增大碳排放。5) 昆虫和微生物可以加速枯木分解并释放碳。取食木材的昆虫不仅可以直接取食和消耗枯木,也可以通过与微生物群落互作,间接对枯木分解产生影响。研究表明,森林病虫害干扰会减少森林面积、降低固碳能力以及增高碳通量,使森林从“碳汇”转变为“碳源”。
中图分类号:
陈汝婷,迟德富. 病虫害干扰对森林碳汇影响的研究进展[J]. 林业科学, 2025, 61(2): 1-11.
Ruting Chen,Defu Chi. Effects of Pest and Disease Disturbance on Forest Carbon Sink — a Review[J]. Scientia Silvae Sinicae, 2025, 61(2): 1-11.
董瀛谦, 李 娟, 潘佳亮, 等. 我国林业检疫性有害生物发生动态分析. 植物检疫, 2019, 33 (6): 15- 19. | |
Dong Y Q, Li J, Pan J L, et al. Dynamic analysis of forestry quarantine pests occurrence in China. Plant Quarantine, 2019, 33 (6): 15- 19. | |
国家统计局. 2024. 中国统计年鉴. 北京: 中国统计出版社. | |
National Bureau of Statistics of China. 2024.China Statistical Yearbook. Beijing: China Statistics Press. [in Chinese] | |
景天忠, 豆晓洁. 害虫对森林碳汇的影响及其机理. 世界林业研究, 2016, 29 (1): 29- 35. | |
Jing T Z, Dou X J. Impact and mechanism of insect pests on forest carbon sequestration. World Forestry Research, 2016, 29 (1): 29- 35. | |
梁 军, 马 琳, 黄咏槐, 等. 森林空间结构对松赤枯病发生程度的影响. 林业科学, 2016, 52 (8): 60- 67. | |
Liang J, Ma L, Huang Y H, et al. Impact of forest spatial structure on damaging degree of pine needle blight. Scientia Silvae Sinicae, 2016, 52 (8): 60- 67. | |
梁 军, 孙志强, 朱彦鹏, 等. 昆嵛山天然林13年演替动态—生物多样性变化, 物种周转与食叶害虫的短期干扰. 中南林业科技大学学报, 2011, 31 (1): 9- 17.
doi: 10.3969/j.issn.1673-923X.2011.01.002 |
|
Liang J, Sun Z Q, Zhu Y P, et al. 13-years succession dynamic of Kunyushan natural forest: change of diversity’ species turnover and herbivorous insect’s short-term disturbance. Journal of Central South University of Forestry & Technology, 2011, 31 (1): 9- 17.
doi: 10.3969/j.issn.1673-923X.2011.01.002 |
|
梁军生, 陈晓鸣, 王健敏, 等. 受小蠹虫不同阶段为害的云南松光合生理反应分析. 林业科学研究, 2009, 22 (3): 407- 412.
doi: 10.3321/j.issn:1001-1498.2009.03.017 |
|
Liang J S, Chen X M, Wang J M, et al. Analysis on photosynthetic physiological responses of Pinus yunnanensis Franchet to bark beetles attacking in different stages. Forest Research, 2009, 22 (3): 407- 412.
doi: 10.3321/j.issn:1001-1498.2009.03.017 |
|
刘 冰, 闫佳钰, 王 朵, 等. 2023年全国主要林业有害生物发生情况及2024年趋势预测. 中国森林病虫, 2024, 43 (01): 41- 45. | |
Liu B, Yan J Y, Wang D, et al. Occurrence of major forest pests in China in 2023 and prediction for trend in 2024. Forest Pest and Disease, 2024, 43 (01): 41- 45. | |
刘世荣, 王 晖, 李海奎, 等. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径. 林业科学, 2024, 60 (4): 157- 172.
doi: 10.11707/j.1001-7488.LYKX20230206 |
|
Liu S R, Wang H, Li H K, et al. Projections of China's forest carbon storage and sequestration and ways of their potential capacity enhancement. Scientia Silvae Sinicae, 2024, 60 (4): 157- 172.
doi: 10.11707/j.1001-7488.LYKX20230206 |
|
刘卫敏, 谢映平, 薛皎亮, 等. 日本松干蚧(同翅目: 松干蚧科)发育过程中形态、习性及天敌. 林业科学, 2015, 51 (7): 69- 83. | |
Liu W M, Xie Y P, Xue J L, et al. Morphology, behavior and natural enemies of Matsucoccus matsumurae (Homoptera: Matsucoccidae) during development. Scientia Silvae Sinicae, 2015, 51 (7): 69- 83. | |
孟 贵, 刘叶菲, 张旭峰, 等. 1998—2018年我国林业有害生物灾情的时序分析. 林业科学, 2022, 58 (7): 134- 143.
doi: 10.11707/j.1001-7488.20220714 |
|
Meng G, Liu Y F, Zhang X F, et al. Sequential variation analysis of forest pest disasters in China from 1998 to 2018. Scientia Silvae Sinicae, 2022, 58 (7): 134- 143.
doi: 10.11707/j.1001-7488.20220714 |
|
慕宗昭, 尹若波, 祁诚进, 等. 集约经营杨树人工林中光肩星天牛不成灾原因的探讨. 林业科学, 1999, 35 (S1): 148- 152. | |
Mu Z Z, Yin R B, Qi C J, et al. A research for the occyrence of Anoplophora glabripennis (Motschulsky) in the poplar intensive management plantation. Scientia Silvae Sinicae, 1999, 35 (S1): 148- 152. | |
庞圣江, 唐 诚, 张 培, 等. 广西大青山西南桦人工林拟木蠹蛾为害的影响因子. 东北林业大学学报, 2016, 44 (11): 85- 88.
doi: 10.3969/j.issn.1000-5382.2016.11.018 |
|
Pang S J, Tang C, Zhang P, et al. Attack factors of Arbela spp. in Betula alnoides plantations at mountain Daqingshan, Guangxi. Journal of Northeast Forestry University, 2016, 44 (11): 85- 88.
doi: 10.3969/j.issn.1000-5382.2016.11.018 |
|
申卫星, 郭慧玲, 迟元凯, 等. 美国白蛾在泰山的适生性分析. 林业科学, 2012, 48 (6): 165- 169.
doi: 10.11707/j.1001-7488.20120625 |
|
Shen W X, Guo H L, Chi Y K, et al. Adaptability analysis of American white moth in the Mount Tai. Scientia Silvae Sinicae, 2012, 48 (6): 165- 169.
doi: 10.11707/j.1001-7488.20120625 |
|
宋玉双, 李 娟, 周艳涛, 等. 我国梢斑螟属害虫研究及防治进展. 中国森林病虫, 2020, 39 (6): 29- 41. | |
Song Y S, Li J, Zhou Y T, et al. Advances in research and control of Dioryctria pests in China. Forest Pest and Disease, 2020, 39 (6): 29- 41. | |
宋玉双, 苏宏钧, 于海英, 等. 2006~2010年我国林业有害生物灾害损失评估. 中国森林病虫, 2011, 30 (6): 1- 4.
doi: 10.3969/j.issn.1671-0886.2011.06.001 |
|
Song Y S, Su H J, Yu H Y, et al. Evaluation of economic losses caused by forest pest disasters between 2006 and 2010 in China. Forest Pest and Disease, 2011, 30 (6): 1- 4.
doi: 10.3969/j.issn.1671-0886.2011.06.001 |
|
孙宝刚. 2012. 云南松林碳储量及松墨天牛危害引起的云南松林碳损失研究. 北京: 中国林业科学研究院. | |
Sun B G. 2012. Carbon storage of Pinus yunnanensis and carbon loses of Pinus yunnanensis caused by Monochamus alternatus. Beijing: Chinese Academy of Forestry . [in Chinese] | |
陶吉兴, 谢秉楼, 季碧勇, 等. 浙江省森林生态系统五大碳库碳汇功能及结构特征. 杭州师范大学学报(自然科学版), 2021, 20 (4): 398- 405. | |
Tao J X, Xie B L, Ji B Y, et al. Carbon sink function and structural characteristics of five major carbon pools in Zhejiang forest ecosystem. Journal of Hangzhou Normal University(Natural Science Edition), 2021, 20 (4): 398- 405. | |
王佳楠, 姜生伟, 张瑞芝, 等. 松材线虫潜育期延长导致红松越年枯死. 林业科学, 2024, 60 (10): 67- 75.
doi: 10.11707/j.1001-7488.LYKX20220895 |
|
Wang J N, Jiang S W, Zhang R Z, et al. Prolonged incubation period of Bursaphelenchus xylophilus results in the over-year death of Pinus koraiensis. Scientia Silvae Sinicae, 2024, 60 (10): 67- 75.
doi: 10.11707/j.1001-7488.LYKX20220895 |
|
王兴昌, 王传宽. 2015. 森林生态系统碳循环的基本概念和野外测定方法评述. 生态学报, 35(13): 4241-4256. | |
Wang X C, Wang C K, 2015. Fundamental concepts and field measurement methods of carbon cycling in forest ecosystems: a review. Acta Ecologica Sinica, 35(13): 4241-4256. [in Chinese] | |
谢立军, 白中科, 杨博宇, 等. 碳中和背景下国内外陆地生态系统碳汇评估方法研究进展. 地学前缘, 2022, 30 (2): 447- 462. | |
Xie L J, Bai Z K, Yang B Y, et al. Research progress on carbon sink assessment methods of terrestrial ecosystems at home and abroad under the background of carbon neutrality. Earth Science Frontiers, 2022, 30 (2): 447- 462. | |
徐耀粘, 江明喜. 森林碳库特征及驱动因子分析研究进展. 生态学报, 2015, 35 (3): 926- 933. | |
Xu Y Z, Jiang M X. Forest carbon pool characteristics and advances in the researches of carbon storage and related factors. Acta Ecologica Sinica, 2015, 35 (3): 926- 933. | |
游桂莹, 张志渊, 张仁铎. 全球陆地生态系统光合作用与呼吸作用的温度敏感性. 生态学报, 2018, 38 (23): 8392- 8399. | |
You G Y, Zhang Z Y, Zhang R D. Temperature sensitivity of photosynthesis and respiration in terrestrial ecosystems globally. Acta Ecologica Sinica, 2018, 38 (23): 8392- 8399. | |
展茂魁, 杨忠岐, 王小艺, 等. 松褐天牛成虫松材线虫病的传播能力. 林业科学, 2014, 50 (7): 74- 81. | |
Zhan M K, Yang Z Q, Wang X Y, et al. Capacity of transmitting Bursaphelenchus xylophilus by the vector Monochamus alternatus adults. Scientia Silvae Sinicae, 2014, 50 (7): 74- 81. | |
赵建兴, 杨忠岐, 任晓红, 等. 红脂大小蠹的生物学特性及在我国的发生规律. 林业科学, 2008, 44 (2): 99- 105.
doi: 10.3321/j.issn:1001-7488.2008.02.015 |
|
Zhao J X, Yang Z Q, Ren X H, et al. Biological characteristics and occurring law of Dendroctonus valens in China. Scientia Silvae Sinicae, 2008, 44 (2): 99- 105.
doi: 10.3321/j.issn:1001-7488.2008.02.015 |
|
周广胜, 周梦子, 周 莉, 等. 中国陆地生态系统增汇潜力研究展望. 科学通报, 2022, 67 (31): 3625- 3632.
doi: 10.1360/TB-2022-0032 |
|
Zhou G S, Zhou M Z, Zhou L, et al. Advances in the carbon sink potential of terrestrial ecosystems in China. Chinese Science Bulletin, 2022, 67 (31): 3625- 3632.
doi: 10.1360/TB-2022-0032 |
|
Addison A L, Powell J A, Six D L, et al. The role of temperature variability in stabilizing the mountain pine beetle-fungus mutualism. Journal of Theoretical Biology, 2013, 335, 40- 50.
doi: 10.1016/j.jtbi.2013.06.012 |
|
Anderson-Teixeira K J, Herrmann V, Cass W B, et al. Long-term impacts of invasive insects and pathogens on composition, biomass, and diversity of forests in Virginia's Blue Ridge mountains. Ecosystems, 2021, 24 (1): 89- 105.
doi: 10.1007/s10021-020-00503-w |
|
Arnold J P, Fonseca C R. Herbivory, pathogens, and epiphylls in Araucaria Forest and ecologically-managed tree monocultures. Forest Ecology & Management, 2011, 262 (6): 1041- 1046. | |
Ayres M P, Lombardero M J. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment, 2000, 262 (3): 263- 286.
doi: 10.1016/S0048-9697(00)00528-3 |
|
Baldrian P. Forest microbiome: diversity, complexity and dynamics. Fems Microbiology Reviews, 2017, 41 (2): 109- 130. | |
Bale J S, Masters G J, Hodkinson I D, et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 2002, 8 (1): 1- 16.
doi: 10.1046/j.1365-2486.2002.00451.x |
|
Berger S, Benediktyová Z, Matous K, et al. Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 2007a, 58 (4): 797- 806.
doi: 10.1093/jxb/erl208 |
|
Berger S, Sinha A K, Roitsch T. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 2007b, 58 (15/16): 4019- 4026.
doi: 10.1093/jxb/erm298 |
|
Bilgin D D, Zavala J A, Zhu J, et al. Biotic stress globally downregulates photosynthesis genes. Plant Cell and Environment, 2010, 33 (10): 1597- 1613.
doi: 10.1111/j.1365-3040.2010.02167.x |
|
Boakye E A, Houle D, Bergeron Y, et al. Insect defoliation modulates influence of climate on the growth of tree species in the boreal mixed forests of eastern Canada. Ecology and Evolution, 2022, 12 (3): e8656.
doi: 10.1002/ece3.8656 |
|
Busby P E, Canham C D. An exotic insect and pathogen disease complex reduces aboveground tree biomass in temperate forests of eastern North America. Canadian Journal of Forest Research, 2011, 41 (2): 401- 411.
doi: 10.1139/X10-213 |
|
Cardinale B J, Duffy J E, Gonzalez A, et al. Biodiversity loss and its impact on humanity. Nature, 2012, 486 (7401): 59- 67.
doi: 10.1038/nature11148 |
|
Clark K L, Skowronski N, Hom J. Invasive insects impact forest carbon dynamics. Global Change Biology, 2010, 16 (1): 88- 101.
doi: 10.1111/j.1365-2486.2009.01983.x |
|
Cook-Patton S C, Leavitt S M, Gibbs D, et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585 (7826): 545- 550.
doi: 10.1038/s41586-020-2686-x |
|
Curtis P S, Gough C M. Forest aging, disturbance and the carbon cycle. New Phytologist, 2018, 219 (4): 1188- 1193.
doi: 10.1111/nph.15227 |
|
Dale V H, Joyce L A, Mcnulty S, et al. Climate change and forest disturbances climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. Bioscience, 2001, 51 (9): 723- 734.
doi: 10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2 |
|
Das A J, Stephenson N L, Davis K P. Why do trees die? Characterizing the drivers of background tree mortality. Ecology, 2016, 97 (10): 2616- 2627.
doi: 10.1002/ecy.1497 |
|
Dore S, Montes-Helu M, Hart S C, et al. Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand-replacing fire. Global change biology, 2012, 18 (10): 3171- 3185.
doi: 10.1111/j.1365-2486.2012.02775.x |
|
Dymond C C, Neilson E T, Stinson G, et al. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems, 2010, 13 (6): 917- 931.
doi: 10.1007/s10021-010-9364-z |
|
Eyles A, Pinkard E A, O'Grady A P, et al. Role of corticular photosynthesis following defoliation in Eucalyptus globulus. Plant Cell and Environment, 2009, 32 (8): 1004- 1014.
doi: 10.1111/j.1365-3040.2009.01984.x |
|
FAO. 2024-08-02. Global Forest Resources Assessment 2005. https://www.fao.org/forest-resources-assessment/past-assessments/fra-2005/zh/ | |
FAO. 2024-08-02. Global Forest Resources Assessment 2020. https://www.fao.org/forest-resources-assessment/2020/zh/ | |
Flower C E, Gonzalez-Meler M A. Responses of temperate forest productivity to insect and pathogen disturbances. Annual Review of Plant Biology, 2015, 66, 547- 569.
doi: 10.1146/annurev-arplant-043014-115540 |
|
Fortier C E, Musso A E, Evenden M L, et al. 2024. Evidence that ophiostomatoid fungal symbionts of mountain pine beetle do not play a role in overcoming lodgepole pine defenses during mass attack. Molecular plant-microbe interactions : MPMI, 37(5): 445–458. | |
Griffiths H M, Ashton L A, Evans T A, et al. Termites can decompose more than half of deadwood in tropical rainforest. Current Biology, 2019, 29 (4): R118- R119.
doi: 10.1016/j.cub.2019.01.012 |
|
Hamann E, Blevins C, Franks S J, et al. Climate change alters plant-herbivore interactions. The New phytologist, 2021, 229 (4): 1894- 1910.
doi: 10.1111/nph.17036 |
|
Harvey J A, Heinen R, Gols R, et al. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Global Change Biology, 2020, 26 (12): 6685- 6701.
doi: 10.1111/gcb.15377 |
|
Hicke J A, Allen C D, Desai A R, et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 2012, 18 (1): 7- 34.
doi: 10.1111/j.1365-2486.2011.02543.x |
|
Hood S M, Baker S, Sala A. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Ecological Applications, 2016, 26 (7): 1984- 2000.
doi: 10.1002/eap.1363 |
|
Huang J B, Kautz M, Trowbridge A M, et al. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytologist, 2020, 225 (1): 26- 36.
doi: 10.1111/nph.16173 |
|
Jacobsen R M, Birkemoe T, Sverdrup-Thygeson A. Priority effects of early successional insects influence late successional fungi in dead wood. Ecology and Evolution, 2015, 5 (21): 4896- 4905.
doi: 10.1002/ece3.1751 |
|
Jactel H, Bauhus J, Boberg J, et al. Tree diversity drives forest stand resistance to natural disturbances. Current Forestry Reports, 2017, 3 (3): 223- 243.
doi: 10.1007/s40725-017-0064-1 |
|
Jactel H, Koricheva J, Castagneyrol B. Responses of forest insect pests to climate change: not so simple. Current Opinion in Insect Science, 2019, 35, 103- 108.
doi: 10.1016/j.cois.2019.07.010 |
|
Kautz M, Anthoni P, Meddens A, et al. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States. Global change biology, 2018, 24 (5): 2079- 2092.
doi: 10.1111/gcb.13974 |
|
Kerchev P I, Fenton B, Foyer C H, et al. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell and Environment, 2012, 35 (2): 441- 453.
doi: 10.1111/j.1365-3040.2011.02399.x |
|
Khan I A, Khan M R, Baig M, et al. Assessment of forest cover and carbon stock changes in sub-tropical pine forest of Azad Jammu & Kashmir (AJK), Pakistan using multi-temporal Landsat satellite data and field inventory. Plos One, 2020, 15 (1): e0226341.
doi: 10.1371/journal.pone.0226341 |
|
Kiritani K. Different effects of climate change on the population dynamics of insects. Applied Entomology and Zoology, 2013, 48 (2): 97- 104.
doi: 10.1007/s13355-012-0158-y |
|
Kristensen J A, Rousk J, Metcalfe D B. Below-ground responses to insect herbivory in ecosystems with woody plant canopies: A meta-analysis. Journal of Ecology, 2020, 108 (3): 917- 930.
doi: 10.1111/1365-2745.13319 |
|
Kurz W A, Dymond C C, Stinson G, et al. Mountain pine beetle and forest carbon feedback to climate change. Nature, 2008a, 452 (7190): 987- 990.
doi: 10.1038/nature06777 |
|
Kurz W A, Stinson G, Rampley G J, et al. Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences - PNAS, 2008b, 105 (5): 1551- 1555.
doi: 10.1073/pnas.0708133105 |
|
Lahr E C, Krokene P. Conifer stored resources and resistance to a fungus associated with the spruce bark beetle Ips typographus. Plos One, 2013, 8 (8): e72405.
doi: 10.1371/journal.pone.0072405 |
|
Lapin K, Bacher S, Cech T, et al. Comparing environmental impacts of alien plants, insects and pathogens in protected riparian forests. Neobiota, 2021, 69, 1- 28.
doi: 10.3897/neobiota.69.71651 |
|
Laurance W F, Fearnside P M, Laurance S G, et al. Relationship between soils and amazon forest biomass: a landscape-scale study. Forest Ecology & Management, 1999, 118 (1-3): 127- 138. | |
Lindroth R L. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology, 2010, 36 (1): 2- 21.
doi: 10.1007/s10886-009-9731-4 |
|
L-M-Arnold A, Grüning M, Simon J, et al. Forest defoliator pests alter carbon and nitrogen cycles. Royal Society Open Science, 2016, 3 (10): 160361.
doi: 10.1098/rsos.160361 |
|
Lovett G M, Arthur M A, Weathers K C, et al. Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems, 2010, 13 (8): 1188- 1200.
doi: 10.1007/s10021-010-9381-y |
|
Lovett G M, Canham C D, Arthur M A, et al. Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience, 2006, 56 (5): 395- 405.
doi: 10.1641/0006-3568(2006)056[0395:FERTEP]2.0.CO;2 |
|
Maclean D A, Taylor A R, Neily P D, et al. Natural disturbance regimes for implementation of ecological forestry: a review and case study from Nova Scotia, Canada. Environmental Reviews, 2022, 30 (1): 128- 158.
doi: 10.1139/er-2021-0042 |
|
Marini L, Okland B, Jonsson A M, et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography, 2017, 40 (12): 1426- 1435.
doi: 10.1111/ecog.02769 |
|
Metsaranta J M, Kurz W A, Neilson E T, et al. Implications of future disturbance regimes on the carbon balance of Canada's managed forest (2010-2100). Tellus Series B-Chemical and Physical Meteorology, 2010, 62 (5): 719- 728.
doi: 10.1111/j.1600-0889.2010.00487.x |
|
Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world's forests. Science, 2011, 333 (6045): 988- 993.
doi: 10.1126/science.1201609 |
|
Parisi F, Pioli S, Lombardi F, et al. Linking deadwood traits with saproxylic invertebrates and fungi in European forests - a review. iForest-Biogeosciences and Forestry, 2018, 11 (3): 423- 436.
doi: 10.3832/ifor2670-011 |
|
Pego J V, Kortstee A J, Huijser C, et al. Photosynthesis, sugars and the regulation of gene expression. Journal of Experimental Botany, 2000, 51 (suppl_1): 407- 416.
doi: 10.1093/jexbot/51.suppl_1.407 |
|
Peltzer D A, Allen R B, Lovett G M, et al. Effects of biological invasions on forest carbon sequestration. Global Change Biology, 2010, 16 (2): 732- 746.
doi: 10.1111/j.1365-2486.2009.02038.x |
|
Pfeifer E M, Hicke J A, Meddens A. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States. Global Change Biology, 2011, 17 (1): 339- 350.
doi: 10.1111/j.1365-2486.2010.02226.x |
|
Pureswaran D S, Roques A, Battisti A. Forest insects and climate change. Current Forestry Reports, 2018, 4 (2): 35- 50.
doi: 10.1007/s40725-018-0075-6 |
|
Quirion B R, Domke G M, Walters B F, et al. Insect and disease disturbances correlate with reduced carbon sequestration in forests of the contiguous United States. Frontiers in Forests and Global Change, 2021, 4, 716582.
doi: 10.3389/ffgc.2021.716582 |
|
Rhoades C C, Hubbard R M, Hood P R, et al. Snagfall the first decade after severe bark beetle infestation of high-elevation forests in Colorado, USA. Ecological Applications, 2020, 30 (3): e02059.
doi: 10.1002/eap.2059 |
|
Roitsch T, Balibrea M E, Hofmann M, et al. Extracellular invertase: key metabolic enzyme and PR protein. Journal of Experimental Botany, 2003, 54 (382): 513- 524.
doi: 10.1093/jxb/erg050 |
|
Rosenberger D W, Venette R C, Maddox M P, et al. Colonization behaviors of mountain pine beetle on novel hosts: implications for range expansion into northeastern North America. Plos One, 2017, 12 (5): e176269. | |
Schãfer K V R, Clark K L, Skowronski N, et al. Impact of insect defoliation on forest carbon balance as assessed with a canopy assimilation model. Global Change Biology, 2010, 16 (2): 546- 560.
doi: 10.1111/j.1365-2486.2009.02037.x |
|
Schroder R, Forstreuter M, Hilker M. A plant notices insect egg deposition and changes its rate of photosynthesis. Plant Physiology, 2005, 138 (1): 470- 477.
doi: 10.1104/pp.105.059915 |
|
Seibold S, Rammer W, Hothorn T, et al. The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597 (7874): 77- 81.
doi: 10.1038/s41586-021-03740-8 |
|
Sierota Z, Grodzki W, Szczepkowski A. Abiotic and biotic disturbances affecting forest health in Poland over the past 30 years: impacts of climate and forest management. Forests, 2019, 10 (1): 75.
doi: 10.3390/f10010075 |
|
Six D L, Wingfield M J. The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic par-adigm. Annual review of entomology, 2011, 56 (1): 255- 272.
doi: 10.1146/annurev-ento-120709-144839 |
|
Skendžić S, Zovko M, Živković I P, et al. The impact of climate change on agricultural insect pests. Insects, 2021, 12 (5): 440.
doi: 10.3390/insects12050440 |
|
Stephenson N L, Das A J, Condit R, et al. Rate of tree carbon accumulation increases continuously with tree size. Nature, 2014, 507 (7490): 90- 93.
doi: 10.1038/nature12914 |
|
Strid Y, Schroeder M, Lindahl B, et al. Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecology, 2014, 7, 47- 58.
doi: 10.1016/j.funeco.2013.09.003 |
|
Thompson G A, Goggin F L. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany, 2006, 57 (4): 755- 766.
doi: 10.1093/jxb/erj135 |
|
Thor M, Ståhl G, Stenlid J. Modelling root rot incidence in Sweden using tree, site and stand variables. Scandinavian Journal of Forest Research, 2005, 20 (2): 165- 176.
doi: 10.1080/02827580510008347 |
|
Tomback D F, Achuff P. Blister rust and western forest biodiversity: ecology, values and outlook for white pines. Forest Pathology, 2010, 40 (3−4): 186- 225.
doi: 10.1111/j.1439-0329.2010.00655.x |
|
Ulyshen M D. Wood decomposition as influenced by invertebrates. Biological reviews of the Cambridge Philosophical Society, 2016, 91 (1): 70- 85.
doi: 10.1111/brv.12158 |
|
Van Lierop P, Lindquist E, Sathyapala S, et al. Global forest area disturbance from fire, insect pests, diseases and severe weather events. Forest Ecology and Management, 2015, 352, 78- 88.
doi: 10.1016/j.foreco.2015.06.010 |
|
Velikova V, Salerno G, Frati F, et al. Influence of feeding and oviposition by phytophagous pentatomids on photosynthesis of herbaceous plants. Journal of Chemical Ecology, 2010, 36 (6): 629- 641.
doi: 10.1007/s10886-010-9801-7 |
|
War A R, Paulraj M G, Ahmad T, et al. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 2012, 7 (10): 1306- 1320. | |
Xu L, Saatchi S S, Yang Y, et al. Changes in global terrestrial live biomass over the 21st century. Science Advances, 2021, 7 (27): eabe9829.
doi: 10.1126/sciadv.abe9829 |
|
Yu H, Zhang Y, Li Y, et al. Herbivore- and Meja-induced volatile emissions from the redroot pigweed Amaranthus retroflexus Linnaeus: their roles in attracting Microplitis mediator (Haliday) parasitoids. Arthropod-Plant Interactions, 2018, 12 (4): 575- 589.
doi: 10.1007/s11829-018-9606-0 |
|
Zhang B C, Zhou X H, Zhou L Y, et al. A global synthesis of below-ground carbon responses to biotic disturbance: a meta-analysis. Global Ecology and Biogeography, 2015, 24 (2): 126- 138.
doi: 10.1111/geb.12235 |
|
Zhang B, Zhou L, Zhou X, et al. Differential responses of leaf photosynthesis to insect and pathogen outbreaks: a global synthesis. Science of the Total Environment, 2022, 832, 155052.
doi: 10.1016/j.scitotenv.2022.155052 |
|
Zhang S N, Li M, Zhao Y X, et al. Silencing the odorant co-receptor (Orco) in Anoplophora glabripennis disrupts responses to pheromones and host volatiles. Pesticide Biochemistry and Physiology, 2024, 203, 105968. | |
Zvereva E L, Lanta V, Kozlov M V. Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia, 2010, 163 (4): 949- 960.
doi: 10.1007/s00442-010-1633-1 |
[1] | 赵杼祺, 胡振宏, 何鲜, 黄志群. 森林木质残体微生物群落构建机制研究进展[J]. 林业科学, 2024, 60(2): 106-117. |
[2] | 肖文发,朱建华,曾立雄,简尊吉,雷蕾. 森林碳汇助力碳中和的几点认识[J]. 林业科学, 2023, 59(3): 1-11. |
[3] | 游巍斌,李颖,周艳,何东进. 武夷山国家公园马尾松林改为茶园后影响表层土壤碳含量的林缘效应[J]. 林业科学, 2023, 59(10): 41-49. |
[4] | 孔凡斌,曹露丹,徐彩瑶. 基于碳收支核算的钱塘江流域森林碳补偿机制[J]. 林业科学, 2022, 58(9): 1-15. |
[5] | 王妍,冯金玲,吴小慧,黄蓝明,吴娟,陈宇,杨志坚. 施肥对闽楠幼苗光合碳固定的影响[J]. 林业科学, 2022, 58(5): 40-52. |
[6] | 侯志康,曾松伟,莫路锋,周宇峰. 基于GA-BP神经网络的雷竹林CO2浓度反演[J]. 林业科学, 2022, 58(2): 42-48. |
[7] | 贾畅,王丽娜,唐亚坤. 利用Biome-BGC模型模拟黄土区沙棘人工林碳通量时的生理生态参数敏感性[J]. 林业科学, 2022, 58(11): 49-60. |
[8] | 邢军超,张一南,石焱,李金鑫,李敏,申宛娜,王黎,赵嘉平. 腐烂病菌、溃疡病菌侵染早期新疆杨叶片组织光合响应特征的比较[J]. 林业科学, 2021, 57(9): 121-129. |
[9] | 朱爱琴,顾蕾,朱玮强,冯贻勇,陈伟,周国模. 外生激励和价值认同对农户持续参与森林碳汇项目意愿的影响[J]. 林业科学, 2021, 57(8): 176-188. |
[10] | 姚凯,吴沿友. 氟离子和碳酸氢根对构树幼苗生长和碳代谢的影响[J]. 林业科学, 2021, 57(6): 56-63. |
[11] | 赵秀婷,王延双,段劼,马履一,何宝华,贾忠奎,桑子阳,朱仲龙. 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响[J]. 林业科学, 2021, 57(4): 43-53. |
[12] | 王晓,韦小丽,吴高殷,陈胜群. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响[J]. 林业科学, 2021, 57(4): 173-181. |
[13] | 李益,冯秀秀,赵发珠,郭垚鑫,王俊,任成杰. 秦岭太白山不同海拔锐齿栎林土壤微生物群落的变化特征[J]. 林业科学, 2021, 57(12): 22-31. |
[14] | 孙伟博,宫新栋,周燕,李红岩. 转玉米PEPC和PPDK基因杨树苗期的光合生理特性[J]. 林业科学, 2020, 56(7): 33-43. |
[15] | 胡海清,罗碧珍,罗斯生,魏书精,王振师,李小川,刘菲. 林火干扰对森林生态系统碳库的影响研究进展[J]. 林业科学, 2020, 56(4): 160-169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||