林业科学 ›› 2024, Vol. 60 ›› Issue (12): 83-91.doi: 10.11707/j.1001-7488.LYKX20230533
收稿日期:
2023-11-07
出版日期:
2024-12-25
发布日期:
2025-01-02
通讯作者:
林元震
E-mail:.yzhlin@scau.edu.cn
基金资助:
Ruiyan Wei1,2,Weihua Zhang2,Fang Xu2,Yuanzhen Lin1,*()
Received:
2023-11-07
Online:
2024-12-25
Published:
2025-01-02
Contact:
Yuanzhen Lin
E-mail:.yzhlin@scau.edu.cn
摘要:
目的: 开展红锥全基因组选择(genomic selection,GS)研究和优良子代早期评选,对快速选育优良新品种具有重要意义。方法: 以红锥全分布区内226个无性系和覆盖23个半同胞家系的479株子代为试验材料,通过高通量重测序获取基因型分型数据,针对生长性状开展GS研究,采用5折交叉验证法评估5种GS模型和10种SNPs数量对GS预测准确性的影响;基于GS预测模型估计候选群体的基因组估计育种值(genomic estimated breeding value,GEBV),采用布雷金多性状评定法进行优良子代个体的早期综合评选。结果: 训练群体中,胸径性状的变异系数为22.73%,大于树高(17.13%),它们之间呈极显著正相关(r=0.63, P<0.001);树高和胸径在种源间均存在极显著差异(P<0.001)。参考群体和候选群体经重测序分型、数据质控后,每个个体得到790 877个SNPs,这些SNPs较均匀地分布在红锥基因组上。基于基因组最佳无偏估计(genomic best linear unbiased prediction,GBLUP)模型,训练群体树高和胸径的广义遗传力分别为0.52和0.48,不同标记SNPs数量对遗传力估计影响很小。在五种GS模型中,树高GS预测准确性最高的是Bayes B模型(0.21),胸径则是Bayes ridge regression(BRR)模型(0.06);贝叶斯模型预测准确性要优于GBLUP模型,但它们之间差异不显著。对于10种SNPs数量,在0.5~5 K阶段,GS预测准确性先升高,随后达到平台期。树高性状调用Bayes B模型,胸径性状调用BRR模型,对红锥候选群体各性状GEBV使用布雷金多性状综合评定法评选出15株优良子代个体,树高、胸径GEBV均值分别比参考群体均值提高了7.0%和5.2%。这些子代个体具体为4 438、4 468、4 407、4 388、4 052、4 461、4 390、4 389、4 410、4 399、4 460、4 467、4 212、4 044、4 459和4 020,主要来自F5和F29两个家系。结论: 本研究建立了红锥的GS预测模型,并依据候选群体GEBV进行了优良个体的早期评选,为后续红锥优良新品种的快速选育奠定了技术和材料基础。
中图分类号:
魏瑞研,张卫华,徐放,林元震. 红锥生长性状的全基因组选择与优良子代早期评选[J]. 林业科学, 2024, 60(12): 83-91.
Ruiyan Wei,Weihua Zhang,Fang Xu,Yuanzhen Lin. Genomic Selection for Growth Traits and Early Selection of Superior Progeny in Castanopsis hystrix[J]. Scientia Silvae Sinicae, 2024, 60(12): 83-91.
表1
SNPs在红锥基因组上的分布"
染色体号 Chromosome No. | Chr1 | Chr2 | Chr3 | Chr4 | Chr5 | Chr6 | Chr7 | Chr8 | Chr9 | Chr10 | Chr11 | Chr12 |
染色体长度 Chromosome size/Mb | 63.76 | 109.75 | 103.31 | 87.42 | 77.66 | 61.94 | 66.29 | 64.51 | 50.54 | 56.79 | 68.54 | 106.04 |
SNP数目SNP number | 60 835 | 83 426 | 97 191 | 72 637 | 65 273 | 53 556 | 59 774 | 56 819 | 45 687 | 54 151 | 52 119 | 89 409 |
SNP密度SNP density/(number·Mb?1) | 954.18 | 760.13 | 940.81 | 830.86 | 840.45 | 864.57 | 901.77 | 880.78 | 903.95 | 953.56 | 760.41 | 843.17 |
表2
选出的15株候选个体生长性状的GEBV和综合评价值①"
个体编号 Tree No. | H.GEBV (m) | DBH.GEBV (cm) | Qi | Qi排名 Qi rank | 家系号 Family NO. |
9.863 | 17.014 | 1.398 | 1 | F5 | |
10.055 | 16.618 | 1.397 | 2 | F5 | |
10.105 | 16.480 | 1.396 | 3 | F5 | |
10.320 | 16.096 | 1.395 | 4 | F8 | |
9.736 | 17.009 | 1.394 | 5 | F12 | |
10.129 | 16.352 | 1.394 | 6 | F29 | |
10.224 | 16.194 | 1.394 | 7 | F8 | |
9.946 | 16.592 | 1.392 | 8 | F8 | |
10.032 | 16.349 | 1.390 | 9 | F5 | |
10.094 | 16.237 | 1.390 | 10 | F29 | |
10.069 | 16.161 | 1.388 | 11 | F29 | |
9.941 | 16.354 | 1.387 | 12 | F5 | |
9.930 | 16.331 | 1.386 | 13 | F4 | |
9.981 | 16.224 | 1.386 | 14 | F29 | |
9.909 | 16.246 | 1.384 | 15 | F10 | |
Mean.s | 10.022 | 16.417 | — | — | — |
Mean.p | 9.370 | 15.600 | — | — | — |
曹 珂, 陈昌文, 杨选文, 等. 桃果实单果重及可溶性固形物含量的全基因组选择分析. 中国农业科学, 2023, 56 (5): 951- 963. | |
Cao K, Chen C W, Yang X W, et al. Genomic selection for fruit weight and soluble solid contents in peach. Scientia Agricultura Sinica, 2023, 56 (5): 951- 963. | |
丁昌俊, 黄秦军, 张冰玉, 等. 北方型美洲黑杨不同无性系重要性状评价. 林业科学研究, 2016, 29 (3): 331- 339.
doi: 10.3969/j.issn.1001-1498.2016.03.004 |
|
Ding C J, Huang Q J, Zhang B Y, et al. Evaluation of important traits of different clones of north-typed Populus deltoides. Forest Research, 2016, 29 (3): 331- 339.
doi: 10.3969/j.issn.1001-1498.2016.03.004 |
|
李朋乐. 2022. 基于GBS-SNP开发的马尾松全基因组选择育种研究. 湖南: 中南林业科技大学. | |
Li P L. 2022. Study on genomic selection of Pinus massoniana based on GBS-SNP. Hunan: Central South University of Forestry & Technology. [in Chinese] | |
李 娜, 杨袁木, 徐 放, 等. 红锥优树无性系群体表型变异研究及综合选择. 中南林业科技大学学报, 2023, 43 (8): 73- 84. | |
Li N, Yang Y M, Xu F, et al. Phenotypic variation study and comprehensive selection of elite clonal populations of Castanopsis hystrix. Journal of Central South University of Forestry & Technology, 2023, 43 (8): 73- 84. | |
林元震. 林木基因型与环境互作的研究方法及其应用. 林业科学, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516 |
|
Lin Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications. Scientia Silvae Sinicae, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516 |
|
王鸣刚, 涂智杰, 丘小军, 等. 优质红锥种源遗传多样性的RAPD分析. 厦门大学学报(自然科学版), 2006, 45 (4): 570- 574. | |
Wang M G, Tu Z J, Qiu X J, et al. Genetic diversity of Castanopsis hystrix by RAPD analysis. Journal of Xiamen University (Natural Science), 2006, 45 (4): 570- 574. | |
肖丽娜, 魏瑞研, 谭芷茵, 等. AFEchidna—动植物育种数据遗传评估分析的R程序包. 林业与环境科学, 2022, 38 (5): 50- 56.
doi: 10.3969/j.issn.1006-4427.2022.05.009 |
|
Xiao L N, Wei R Y, Tan Z Y, et al. AFEchidna is a R package for genetic evaluation of plant and animal breeding datasets. Forestry and Environmental Science, 2022, 38 (5): 50- 56.
doi: 10.3969/j.issn.1006-4427.2022.05.009 |
|
徐 放, 杨晓慧, 廖焕琴, 等. 红锥天然分布区气候区区划. 林业与环境科学, 2017, 33 (2): 21- 28.
doi: 10.3969/j.issn.1006-4427.2017.02.004 |
|
Xu F, Liao H Q, Yang X H, et al. The climatic regionalization of the distributional region of Castanopsis hystrix. Forestry and Environmental Science, 2017, 33 (2): 21- 28.
doi: 10.3969/j.issn.1006-4427.2017.02.004 |
|
杨会肖, 廖焕琴, 杨晓慧, 等. 2代种子园红锥生长和形质性状遗传变异分析. 华南农业大学学报, 2017, 38 (5): 81- 85.
doi: 10.7671/j.issn.1001-411X.2017.05.014 |
|
Yang H X, Liao H Q, Yang X H, et al. Genetic variation analysis of growth and form traits of Castanopsis hystrix in the second generation seed orchard. Journal of South China Agricultural University, 2017, 38 (5): 81- 85.
doi: 10.7671/j.issn.1001-411X.2017.05.014 |
|
张苗苗, 王军辉, 卢 楠, 等. 林木全基因组选择研究现状和应用. 世界林业研究, 2021, 34 (4): 26- 32. | |
Zhang M M, Wang J H, Lu N, et al. Research progress and application of whole genomic selection in forest tree breeding. World Forestry Research, 2021, 34 (4): 26- 32. | |
朱积余, 蒋 燚, 潘 文. 广西红锥优树选择标准研究. 广西林业科学, 2002, 31 (3): 109- 113.
doi: 10.3969/j.issn.1006-1126.2002.03.001 |
|
Zhu J Y, Jiang Y, Pan W. Study on the selection criteria of Castanopsis hystrix superior tree in Guangxi. Guangxi Forestry Science, 2002, 31 (3): 109- 113.
doi: 10.3969/j.issn.1006-1126.2002.03.001 |
|
Bartholome J, Van Heerwaarden J, Isik F, et al. Performance of genomic prediction within and across generations in maritime pine. BMC Genomics, 2016, 17 (1): 604.
doi: 10.1186/s12864-016-2879-8 |
|
Beaulieu J, Doerksen T, Clément S, et al. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity, 2014, 113 (4): 343- 352.
doi: 10.1038/hdy.2014.36 |
|
Beyene Y, Semagn K, Mugo S, et al. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Science, 2015, 55 (1): 154- 163.
doi: 10.2135/cropsci2014.07.0460 |
|
Browning B L, Zhou Y, Browning S R. A one-penny imputed genome from next generation reference panels. American Journal of Human Genetics, 2018, 103 (3): 338- 348.
doi: 10.1016/j.ajhg.2018.07.015 |
|
Chen Z, Baison J, Pan J, et al. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics, 2018, 19 (1): 946.
doi: 10.1186/s12864-018-5256-y |
|
Cros D, Mbo-Nkoulou L, Bell J M, et al. Within-family genomic selection in rubber tree (Hevea brasiliensis) increases genetic gain for rubber production. Industrial Crops and Products, 2019, 138, 111464.
doi: 10.1016/j.indcrop.2019.111464 |
|
Crossa J, Pérez-Rodríguez P, Cuevas J, et al. Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science, 2017, 22 (11): 961- 975.
doi: 10.1016/j.tplants.2017.08.011 |
|
Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics, 2011, 27 (15): 2156- 2158.
doi: 10.1093/bioinformatics/btr330 |
|
Duran R, Isik F, Zapata-Valenzuela J, et al. Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile. Tree Genetics & Genomes, 2017, 13 (4): 74. | |
Estopa R, Paludeto J, Müller B, et al. Genomic prediction of growth and wood quality traits in Eucalyptus benthamii using different genomic models and variable SNP genotyping density. New Forests, 2023, 54 (2): 343- 362.
doi: 10.1007/s11056-022-09924-y |
|
Gianola D, deLos C G, Hill W G, et al. Additive genetic variability and the Bayesian alphabet. Genetics, 2009, 183 (1): 347- 363.
doi: 10.1534/genetics.109.103952 |
|
Hickey J M, Chiurugwi T, Mackay I, et al. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 2017, 49 (9): 1297- 1303.
doi: 10.1038/ng.3920 |
|
Isik F. Genomic prediction of complex traits in perennial plants: a case for forest trees. Methods in Molecular Biology, 2022, 2467, 493- 520. | |
Isik F, Bartholomé J, Farjat A, et al. Genomic selection in maritime pine. Plant Science, 2016, 242, 108- 119.
doi: 10.1016/j.plantsci.2015.08.006 |
|
Isik F, Holland J, Maltecca C. 2017. Genetic data analysis for plant and animal breeding. Switzerland: Springer International Publishing. | |
Kwong Q B, Ong A L, Teh C K, et al. Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq. ). Scientific Reports, 2017, 7 (1): 1- 9.
doi: 10.1038/s41598-016-0028-x |
|
Legarra A, Robert-Granié C, Manfredi E, et al. Performance of genomic selection in mice. Genetics, 2008, 180 (1): 611- 618.
doi: 10.1534/genetics.108.088575 |
|
Li N, Yang Y M, Xu F, et al. Genetic diversity and population structure analysis of Castanopsis hystrix and construction of a core collection using phenotypic traits and molecular markers. Genes, 2022, 13 (12): 2383.
doi: 10.3390/genes13122383 |
|
Liu G J, Tian Z W, Jia H Y, et al. Genetic parameter estimates for the growth and morphological traits of Castanopsis hystrix families and the genotype× environment interaction effects. Forests, 2023, 14 (8): 1619.
doi: 10.3390/f14081619 |
|
Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819 |
|
Nsibi M, Gouble B, Bureau S, et al. Adoption and optimization of genomic selection to sustain breeding for apricot fruit quality. Genes Genomes Genetics, 2020, 10 (12): 4513- 4529.
doi: 10.1534/g3.120.401452 |
|
O’Connor K M, Hayes B J, Hardner C M, et al. Genomic selection and genetic gain for nut yield in an Australian macadamia breeding population. BMC Genomics, 2021, 22 (1): 370.
doi: 10.1186/s12864-021-07694-z |
|
Perez P, deLos C G. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 2014, 198 (2): 483- 495.
doi: 10.1534/genetics.114.164442 |
|
Pérez-Enciso M, Rincón J C, Legarra A. Sequence- vs. chip-assisted genomic selection: accurate biological information is advised. Genetics Selection Evolution, 2015, 47 (1): 43.
doi: 10.1186/s12711-015-0117-5 |
|
Rambolarimanana T, Ramamonjisoa L, Verhaegen D, et al. Performance of multi-trait genomic selection for Eucalyptus robusta breeding program. Tree Genetics & Genomes, 2018, 14 (5): 17. | |
Resende M D V, Resende M F R, Sansaloni C P, et al. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytologist, 2012a, 194 (1): 116- 128.
doi: 10.1111/j.1469-8137.2011.04038.x |
|
Resende M F R, Muñoz P, Resende M D V, et al. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics, 2012b, 190 (4): 1503- 1510.
doi: 10.1534/genetics.111.137026 |
|
Spindel J, Begum H, Akdemir D, et al. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genetics, 2015, 11 (2): e1004982.
doi: 10.1371/journal.pgen.1004982 |
|
Suontama M, Klápště J, Telfer E, et al. Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. Heredity, 2019, 122 (3): 370- 379.
doi: 10.1038/s41437-018-0119-5 |
|
Thistlethwaite F R, Ratcliffe B, Klápště J, et al. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics, 2017, 18 (1): 930.
doi: 10.1186/s12864-017-4258-5 |
|
VanRaden P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91 (11): 4414- 4423.
doi: 10.3168/jds.2007-0980 |
|
Xu Y B, Liu X G, Fu J J, et al. Enhancing genetic gain through genomic selection: from livestock to plants. Plant Communications, 2020, 1 (1): 100005.
doi: 10.1016/j.xplc.2019.100005 |
[1] | 唐继新, 潘启龙, 刘衡, 田祖为, 陈东成, 黄德卫, 莫世宇, 蒋志林. 红锥人工林立木生长应变的变异规律及受生长弱化处理的影响[J]. 林业科学, 2024, 60(12): 120-127. |
[2] | 丁晓磊,汪青桐,林司曦,赵瑞文,张悦,叶建仁. 广东省与江苏省松材线虫种群遗传结构差异分析[J]. 林业科学, 2022, 58(8): 1-9. |
[3] | 王云鹏,张蕊,周志春,黄少华,马丽珍,范辉华. 木荷优树自由授粉家系早期生长性状遗传变异动态规律[J]. 林业科学, 2020, 56(9): 77-86. |
[4] | 赵总,刘勇,田祖为,贾宏炎,赵蕊蕊,安宁. 红锥种子雨土壤种子库与幼苗更新动态[J]. 林业科学, 2020, 56(5): 37-49. |
[5] | 郭丽,张亮,李蓬勃,刘福,王越,孔祥波,张苏芳,张真. 不同栽培方式对4种黑杨派无性系生长及对春尺蠖抗性的影响[J]. 林业科学, 2020, 56(5): 193-202. |
[6] | 朱嵊,黄敏仁. 基因组选择在林木遗传育种研究中的进展与展望[J]. 林业科学, 2020, 56(11): 176-186. |
[7] | 沈乐, 徐建民, 李光友, 陆钊华, 杨雪艳, 朱映安, 胡杨, 宋佩宁, 郭文仲. 尾叶桉与巨桉杂种F1代生长性状遗传分析[J]. 林业科学, 2019, 55(7): 68-76. |
[8] | 伍汉斌,段爱国,张建国. 杉木地理种源不同林龄生长变异及选择[J]. 林业科学, 2019, 55(10): 181-192. |
[9] | 魏明科, 俞金健, 黄晓龙, 刘琼瑶, 黄华宏, 林二培, 童再康. 杉木NAC转录因子基因ClNAC1的克隆、表达及单核苷酸多态性分析[J]. 林业科学, 2018, 54(9): 49-59. |
[10] | 张帅楠, 栾启福, 姜景民. 基于无损检测技术的湿地松生长及材性性状遗传变异分析[J]. 林业科学, 2017, 53(6): 30-36. |
[11] | 陈琳, 曾杰, 贾宏炎, 蒙彩兰, 黎明. 容器规格和基质配方对红锥幼苗生长及造林效果的影响[J]. 林业科学, 2017, 53(3): 76-83. |
[12] | 赖猛, 孙晓梅, 张守攻. 日本落叶松及其杂种无性系间的物候变异与早期选择[J]. 林业科学, 2014, 50(7): 52-57. |
[13] | 徐斌, 张方秋, 潘文, 刘有成. 我国红锥天然群体的遗传多样性和遗传结构[J]. 林业科学, 2013, 49(10): 162-166. |
[14] | 张谦;曾令海;何波祥;连辉明;蔡燕灵. 马尾松自由授粉家系产脂力的年度变化及遗传分析[J]. , 2013, 49(1): 48-52. |
[15] | 栾启福;姜景民;张建忠;张守攻. 火炬松×加勒比松F1代生长、树干通直度和基本密度遗传和配合力分析[J]. 林业科学, 2011, 47(3): 178-183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||