林业科学 ›› 2020, Vol. 56 ›› Issue (11): 176-186.doi: 10.11707/j.1001-7488.20201119
朱嵊1,2,3,黄敏仁1,3,*
收稿日期:
2020-07-23
出版日期:
2020-11-25
发布日期:
2020-12-30
通讯作者:
黄敏仁
基金资助:
Sheng Zhu1,2,3,Minren Huang1,3,*
Received:
2020-07-23
Online:
2020-11-25
Published:
2020-12-30
Contact:
Minren Huang
摘要:
基因组选择技术是目前动植物遗传育种的关键技术和研究热点,已在一些动植物的遗传改良工作中取得了重要进展。林木具有世代间隔长的生物学特性,因而育种周期长,早期选择是缩短林木育种周期和加快林木育种进程的有效方法。林木早期选择研究可以粗略分为3个阶段:基于性状表型早晚期相关的早期选择、分子标记辅助选择的早期选择以及基因组选择。林木遗传改良的目标性状主要是生长性状和木材品质性状,其大都是复杂的数量性状,在生长进程中受到更加持久的环境影响。同时生长性状的遗传力是随着生长进程而发生变化的。基因组选择在林木遗传改良中的应用受限于多年生林木自身特点以及研究基础薄弱,包括世代间隔长、体型高大、幼龄期长、基因组和表型组等组学数据匮乏以及相关研究技术平台不完善等因素。为了推动基因组选择技术在林木遗传改良中的应用进程,本文介绍基因组选择技术的原理与方法,总结基因组选择技术在林木遗传育种中的研究进展,探讨基因组选择技术在林木遗传改良中应用的限制性因素。简要介绍基因组选择的线性模型、统计学估计方法(SNP-BLUP、GBLUP和Bayesian估计模型)和分析工具(rrBLUP、synbreed、BGLR、GVCBLUP、GAPIT、sommer和BLUPGA,等)。概括总结基因组选择技术在林木育种中应用的优势,简要概述阔叶树种(杨属、桉属、油棕属和橡胶树属)和针叶树种(松属和云杉属)的基因组选择研究案例,以油棕基因组选择研究作为典型案例分析。林木树种的基因组选择研究案例均表明基因组选择技术有助于提高林木选育效率和加快林木育种进程。深入探讨林木树种的参考基因组、全基因组关联分析、育种群体、连锁不平衡和多年生属性5个方面对林木基因组选择研究的影响。基因组选择在林木遗传育种研究中具有潜在应用前景,但其可行性仍需要大量的模拟数据和真实数据评估。当前林木基因组选择研究所面临的重要问题:1)林木树种的基因组组装质量普遍不高;2)如何开展林木多性状全基因组选择研究;3)针对多年生林木树种自身特点,设计出合理的试验方案,开发具备纵向性状数据处理能力的统计模型和分析软件。
中图分类号:
朱嵊,黄敏仁. 基因组选择在林木遗传育种研究中的进展与展望[J]. 林业科学, 2020, 56(11): 176-186.
Sheng Zhu,Minren Huang. Recent Advances and Prospect of the Genomic Selection in Forest Genetics and Tree Breeding[J]. Scientia Silvae Sinicae, 2020, 56(11): 176-186.
表1
GS分析软件①"
工具 Tools | 年份 Year | 计算机语言 Language | 统计学模型 Statistical model | PubMed |
BLR | 2010 | R | Bayesian ridge regression | https://cran.r-project.org/web/packages/BLR/ |
rrBLUP | 2011 | R | GBLUP | https://doi.org/10.3835/plantgenome2011.08.0024( |
synbreed | 2012 | R | GBLUP, Bayesian LASSO, Bayesian ridge regression | PMID: 22689388 ( |
BGLR | 2014 | R | BayesA, BayesB, BayesCπ, Bayesian LASSO | PMID: 25009151 ( |
GVCBLUP | 2014 | C++ | GBLUP | PMID: 25107495 ( |
GS3 | 2014 | Fortran | GBLUP, Bayesian LASSO, BayesCπ | https://github.com/alegarra/gs3 |
VIGoR | 2015 | R | Bayesian ridge regression | https://cran.r-project.org/web/packages/VIGoR/ |
GAPIT | 2016 | R | sBLUP (SUPER BLUP), cBLUP (compressed BLUP) | PMID: 22796960 ( |
sommer | 2016 | R | GBLUP | PMID: 27271781 ( |
breedR | 2016 | R | GBLUP | http://famuvie.github.io/breedR/ |
BGGE | 2017 | R | Bayesian ridge regression | https://cran.r-project.org/web/packages/BGGE/ |
BLUPGA | 2018 | R | BLUP|GA | PMID: 29891736 ( |
GenSel | 2018 | Julia | BayesCπ | https://github.com/austin-putz/GenSel |
表2
林木树种GS研究报道①"
属Genus | 种Species | PubMed |
油棕属Elaeis | 油棕E. guineensis | PMID: 25488416 ( |
油棕E. guineensis | PMID: 28588233 ( | |
桉属Eucalyptus | 巨桉×尾叶桉E. grandis × E. urophylla | PMID: 22309312 ( |
巨桉×尾叶桉E. grandis × E. urophylla | PMID: 28662679 ( | |
巨桉×尾叶桉E. grandis × E. urophylla | PMID: 31084883 ( | |
尾叶桉×巨桉E. urophylla × E. grandis | PMID: 31084883 ( | |
尾叶桉×巨桉E. urophylla × E. grandis | PMID: 29362102 ( | |
多苞桉E. polybractea | PMID: 29891736 ( | |
橡胶树属Hevea | 橡胶树H. brasiliensis | PMID: 31708955 ( |
橡胶树H. brasiliensis | https://doi.org/10.1016/j.bindcrop2019.111464 ( | |
云杉属Picea | 欧洲云杉P. abies | PMID: 30563448 ( |
白云杉P. glauca | PMID: 25442968 ( | |
白云杉P. glauca | PMID: 24781808 ( | |
西加云杉P. sitchensis | https://doi.org/10.1007/s11295-017-1118-z ( | |
黑云杉P. mariana | PMID: 28454519 ( | |
松属Pinus | 海岸松P. pinaster | PMID: 26566829 ( |
海岸松P. pinaster | PMID: 27515254 ( | |
火炬松P. taeda | PMID: 22271763 ( | |
火炬松P. taeda | PMID: 21973055 ( | |
火炬松P. taeda | PMID: 23585458 ( | |
杨属Populus | 美洲黑杨×欧美杨P. deltoides× P. euramericana | 朱嵊等, 待发表Zhu et al., unpublished |
李安鑫, 吕建雄, 蒋佳荔. 基于生长轮的杉木早材黏弹性. 林业科学, 2019, 55 (12): 93- 100. | |
Li A X , Lü J X , Jiang J L . The viscoelasticity of Chinese fir earlywood in individual growth rings. Scientia Silvae Sinicae, 2019, 55 (12): 93- 100. | |
林元震. 林木基因型与环境互作的研究方法及其应用. 林业科学, 2019, 55 (5): 142- 151. | |
Lin Y Z . Research methodologies for genotype by environment interactions in forest trees and their applications. Scientia Silvae Sinicae, 2019, 55 (5): 142- 151. | |
王重龙, 丁向东, 刘剑锋, 等. 基因组育种值估计的贝叶斯方法. 遗传, 2014, 36 (2): 111- 118. | |
Wang C L , Ding X D , Liu J F , et al. Bayesian methods for genomic breeding value estimation. Hereditas (Beijing), 2014, 36 (2): 111- 118. | |
伍汉斌, 段爱国, 张建国. 杉木地理种源不同林龄生长变异及选择. 林业科学, 2019, 55 (10): 181- 192. | |
Wu H B , Duan A G , Zhang J G . Growth variation and selection effect of Cunninghamia lanceolata provenances at different stand ages. Scientia Silvae Sinicae, 2019, 55 (10): 181- 192. | |
杨保国, 贾宏炎, 郝建, 等. 不同林龄柚木人工林心边材生长变异特征. 林业科学, 2020, 56 (1): 65- 73. | |
Yang B G , Jian H Y , Hao J , et al. Growth variation of heartwood and sapwood of teak (Tectona grandis) plantations at different ages. Scientia Silvae Sinicae, 2020, 56 (1): 65- 73. | |
尹立林, 马云龙, 项韬, 等. 全基因组选择模型研究进展及展望. 畜牧兽医学报, 2019, 50 (2): 233- 242. | |
Yin L L , Ma Y L , Xiang T , et al. The progress and prospect of genomic selection models. Chinese Journal of Animal and Veterinary Sciences, 2019, 50 (2): 233- 242. | |
Altman N , Krzywinski M . The curse(s) of dimensionality. Nat Methods, 2018, 15 (6): 399- 400.
doi: 10.1038/s41592-018-0019-x |
|
Baison J , Vidalis A , Zhou L , et al. Genome-wide association study identified novel candidate loci affecting wood formation in Norway spruce. Plant J, 2019, 100 (1): 83- 100.
doi: 10.1111/tpj.14429 |
|
Bartholome J , Van Heerwaarden J , Isik F , et al. Performance of genomic prediction within and across generations in maritime pine. BMC Genomics, 2016, 17 (1): 604.
doi: 10.1186/s12864-016-2879-8 |
|
Bassi F M , Bentley A R , Charmet G , et al. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci, 2016, 242, 23- 36.
doi: 10.1016/j.plantsci.2015.08.021 |
|
Beaulieu J , Doerksen T , Clement S , et al. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity (Edinb), 2014a, 113 (4): 343- 352.
doi: 10.1038/hdy.2014.36 |
|
Beaulieu J , Doerksen T K , Mackay J , et al. Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics, 2014b, 15 (1): 1048.
doi: 10.1186/1471-2164-15-1048 |
|
Birol I , Raymond A , Jackman S D , et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics, 2013, 29 (12): 1492- 1497.
doi: 10.1093/bioinformatics/btt178 |
|
Bond B J . Age-related changes in photosynthesis of woody plants. Trends Plant Sci, 2000, 5 (8): 349- 353.
doi: 10.1016/S1360-1385(00)01691-5 |
|
Cappa E P , De Lima B M , Da Silva-Junior O B , et al. Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP. Plant Sci, 2019, 284, 9- 15.
doi: 10.1016/j.plantsci.2019.03.017 |
|
Chang E M , Zhang J , Deng N , et al. Transcriptome differences between 20-and 3, 000-year-old Platycladus orientalis reveal that ROS are involved in senescence regulation. Electronic Journal of Biotechnology, 2017, 29, 68- 77.
doi: 10.1016/j.ejbt.2017.06.008 |
|
Chen Z Q , Baison J , Pan J , et al. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics, 2018, 19 (1): 946.
doi: 10.1186/s12864-018-5256-y |
|
Chhetri H B , Macaya-Sanz D , Kainer D , et al. Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. New Phytol, 2019, 223 (1): 293- 309.
doi: 10.1111/nph.15777 |
|
Covarrubias-Pazaran G . Genome-assisted prediction of quantitative traits using the R Package sommer. PLoS ONE, 2016, 11 (6): e0156744.
doi: 10.1371/journal.pone.0156744 |
|
Cros D , Denis M , Sanchez L , et al. Genomic selection prediction accuracy in a perennial crop:case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet, 2015, 128 (3): 397- 410.
doi: 10.1007/s00122-014-2439-z |
|
Cros D , Mbo-Nkoulou L , Bell J M , et al. Within-family genomic selection in rubber tree (Hevea brasiliensis) increases genetic gain for rubber production. Industrial Crops and Products, 2019, 138, 111464.
doi: 10.1016/j.indcrop.2019.111464 |
|
Cros D , Tchounke B , Nkague-Nkamba L . Training genomic selection models across several breeding cycles increases genetic gain in oil palm in silico study. Molecular Breeding, 2018, 38, 89.
doi: 10.1007/s11032-018-0850-x |
|
Daetwyler H D , Pong-Wong R , Villanueva B , et al. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 2010, 185 (3): 1021- 1031. | |
Daetwyler H D , Villanueva B , Woolliams J A . Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE, 2008, 3 (10): e3395. | |
Day M E , Greenwood M S , Diaz-Sala C . Age-and size-related trends in woody plant shoot development:regulatory pathways and evidence for genetic control. Tree Physiol, 2002, 22 (8): 507- 513. | |
Dhillon G P S , Singh A , Sidhu D S . Variation, inheritance and correlation of growth characteristics of Populus deltoides Bartr. at various ages in the central-plain region of Punjab, India. Forestry Studies in China, 2010, 12 (3): 126- 130. | |
Diao S , Hou Y , Xie Y , et al. Age trends of genetic parameters, early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families. BMC Genet, 2016, 17 (1): 104. | |
Du Q , Lu W , Quan M , et al. Genome-wide association studies to improve wood properties:challenges and prospects. Front Plant Sci, 2018, 9, 1912. | |
Endelman J B . Ridge regression and other kernels for genomic selection with R Package rrBLUP. Plant Genome, 2011, 4 (3): 250- 255. | |
Fritsche-Neto R , Akdemir D , Jannink J L . Accuracy of genomic selection to predict maize single-crosses obtained through different mating designs. Theor Appl Genet, 2018, 131 (5): 1153- 1162. | |
Fuentes-Utrilla P , Goswami C , Cottrell J E , et al. QTL analysis and genomic selection using RADseq derived markers in Sitka spruce:the potential utility of within family data. Tree Genetics & Genomes, 2017, 13, 33.
doi: 10.1007/s11295-017-1118-z |
|
Garcia-Ruiz A , Cole J B , Vanraden P M , et al. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci USA, 2016, 113 (28): E3995- 4004. | |
Gianola D , De Los Campos G , Hill W G , et al. Additive genetic variability and the Bayesian alphabet. Genetics, 2009, 183 (1): 347- 363. | |
Grattapaglia D. 2014. Breeding forest trees by genomic selection: Current progress and the way forward//Tuberosa R, Graner A F E. Genomics of plant genetic resources. Springer, Dordrecht; New York: 651-682. | |
Grattapaglia D , Resende M D V . Genomic selection in forest tree breeding. Tree Genetics & Genomes, 2011, 7, 241- 255. | |
Habier D , Fernando R L , Dekkers J C . The impact of genetic relationship information on genome-assisted breeding values. Genetics, 2007, 177 (4): 2389- 2397. | |
Habier D , Fernando R L , Kizilkaya K , et al. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics, 2011, 12, 186. | |
Habier D , Tetens J , Seefried F R , et al. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol, 2010, 42 (1): 5. | |
Henderson C R . Best linear unbiased estimation and prediction under a selection model. Biometrics, 1975, 31 (2): 423- 447. | |
Hirakawa H , Nakamura Y , Kaneko T , et al. Survey of the genetic information carried in the genome of Eucalyptus camaldulensis. Plant Biotechnology, 2011, 28 (5): 471- 480. | |
Huang M , Cabrera A , Hoffstetter A , et al. Genomic selection for wheat traits and trait stability.Theor Appl Genet, 2016, 129 (9): 1697- 1710. | |
Isik F . Genomic selection in forest tree breeding:the concept and an outlook to the future. New Forests, 2014, 45 (3): 379- 401. | |
Isik F , Bartholome J , Farjat A , et al. Genomic selection in maritime pine. Plant Sci, 2016, 242, 108- 119. | |
Iwata H , Hayashi T , Terakami S , et al. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia.. Breed Sci, 2013, 63 (1): 125- 140. | |
Iwata H , Minamikawa M F , Kajiya-Kanega H , et al. Genomics-assisted breeding in fruit trees. Breed Sci, 2016, 66 (1): 100- 115. | |
Kainer D , Stone E A , Padovan A , et al. Accuracy of genomic prediction for foliar terpene traits in Eucalyptus polybractea. G3 (Bethesda), 2018, 8 (8): 2573- 2583. | |
Karkkainen H P , Sillanpaa M J . Back to basics for Bayesian model building in genomic selection. Genetics, 2012, 191 (3): 969- 987. | |
Kumar S , Chagne D , Bink M C , et al. Genomic selection for fruit quality traits in apple (Malus×domestica Borkh) . PLoS ONE, 2012, 7 (5): e36674. | |
Kwong Q B , Ong A L , Teh C K , et al. Genomic selection in commercial perennial crops:applicability and improvement in oil palm (Elaeis guineensis Jacq.) . Sci Rep, 2017, 7 (1): 2872. | |
Lau N S , Makita Y , Kawashima M , et al. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Sci Rep, 2016, 6, 28594. | |
Lenz P R N , Beaulieu J , Mansfield S D , et al. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics, 2017, 18 (1): 335. | |
Li W F , Yang W H , Zhang S G , et al. Transcriptome analysis provides insights into wood formation during larch tree aging. Tree Genetics & Genomes, 2017, 13, 19. | |
Lipka A E , Tian F , Wang Q , et al. GAPIT:genome association and prediction integrated tool. Bioinformatics, 2012, 28 (18): 2397- 2399. | |
Liu H , Zhou H , Wu Y , et al. The impact of genetic relationship and linkage disequilibrium on genomic selection. PLoS ONE, 2015, 10 (7): e0132379. | |
Ma P , Huang J , Gong W , et al. The impact of genomic relatedness between populations on the genomic estimated breeding values. J Anim Sci Biotechnol, 2018, 9, 64. | |
Ma T , Wang J , Zhou G , et al. Genomic insights into salt adaptation in a desert poplar. Nat Commun, 2013, 4, 2797. | |
Meuwissen T H , Hayes B J , Goddard M E . Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157 (4): 1819- 1829. | |
Meuwissen T H , Solberg T R , Shepherd R , et al. A fast algorithm for BayesB type of prediction of genome-wide estimates of genetic value. Genet Sel Evol, 2009, 41 (1): 2. | |
Millet E J , Kruijer W , Coupel-Ledru A , et al. Genomic prediction of maize yield across European environmental conditions. Nat Genet, 2019, 51 (6): 952- 956. | |
Minamikawa M F , Takada N , Terakami S , et al. Genome-wide association study and genomic prediction using parental and breeding populations of Japanese pear (Pyrus pyrifolia Nakai). Sci Rep, 2018, 8 (1): 11994. | |
Muller B S F , De Almeida Filho J E , Lima B M , et al. Independent and joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3 373 individuals across four breeding populations. New Phytol, 2019, 221 (2): 818- 833. | |
Muranty H , Troggio M , Sadok I B , et al. Accuracy and responses of genomic selection on key traits in apple breeding. Hortic Res, 2015, 2, 15060. | |
Myburg A A , Grattapaglia D , Tuskan G A , et al. The genome of Eucalyptus grandis. Nature, 2014, 510 (7505): 356- 362. | |
Neale D B , Wegrzyn J L , Stevens K A , et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol, 2014, 15 (3): R59. | |
Nyouma A , Bell J M , Jacob F , et al. From mass selection to genomic selection:one century of breeding for quantitative yield components of oil palm (Elaeis guineensis Jacq.) . Tree Genetics & Genomes, 2019, 15 (5): 69. | |
Nystedt B , Street N R , Wetterbom A , et al. The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, 497 (7451): 579- 584. | |
Onogi A , Watanabe M , Mochizuki T , et al. Toward integration of genomic selection with crop modelling:the development of an integrated approach to predicting rice heading dates. Theor Appl Genet, 2016, 129 (4): 805- 817. | |
Osorio L F , White T L , Huber D A . Age tends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden. Silvae Genetica, 2001, 50 (1): 108- 117. | |
Perez P , De Los Campos G . Genome-wide regression and prediction with the BGLR statistical package. Genetics, 2014, 198 (2): 483- 495. | |
Pliura A , Zhang S Y , Bousquet J , et al. Age trends in genotypic variation of wood density and its intra-ring components in young poplar hybrid crosses. Annals of Forest Science, 2006, 63 (7): 673- 685. | |
Rabier C E , Barre P , Asp T , et al. On the accuracy of genomic selection. PLoS ONE, 2016, 11 (6): e0156086. | |
Rahman A Y , Usharraj A O , Misra B B , et al. Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics, 2013, 14, 75. | |
Resende M D V , Resende Jr M F , Sansaloni C P , et al. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol, 2012a, 194 (1): 116- 128. | |
Resende Jr M F , Munoz P , Acosta J J , et al. Accelerating the domestication of trees using genomic selection:accuracy of prediction models across ages and environments. New Phytol, 2012b, 193 (3): 617- 624. | |
Resende Jr M F , Munoz P , Resende M D , et al. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics, 2012c, 190 (4): 1503- 1510. | |
Schmidt M , Kollers S , Maasberg-Prelle A , et al. Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection. Theor Appl Genet, 2016, 129 (2): 203- 213. | |
Shastry B S . SNPs:impact on gene function and phenotype. Methods Mol Biol, 2009, 578, 3- 22. | |
Shepherd R K , Meuwissen T H , Woolliams J A . Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers. BMC Bioinformatics, 2010, 11, 529. | |
Singh R , Ong-Abdulllah M , Low E T , et al. Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature, 2013, 500 (7462): 335- 339. | |
Souza L M , Francisco F R , Goncalves P S , et al. Genomic selection in rubber tree breeding:A comparison of models and methods for managing G×E interactions. Front Plant Sci, 2019, 10, 1353. | |
Tan B , Grattapaglia D , Martins G S , et al. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol, 2017, 17 (1): 110. | |
Tan B , Grattapaglia D , Wu H X , et al. Genomic relationships reveal significant dominance effects for growth in hybrid Eucalyptus. Plant Sci, 2018, 267, 84- 93. | |
Tang C , Yang M , Fang Y , et al. The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants, 2016, 2 (6): 16073. | |
Thorwarth P , Ahlemeyer J , Bochard A M , et al. Genomic prediction ability for yield-related traits in German winter barley elite material. Theor Appl Genet, 2017, 130 (8): 1669- 1683. | |
Tuskan G A , Difazio S , Jansson S , et al. The genome of black cottonwood, Populus trichocarpa(Torr. & Gray) . Science, 2006, 313 (5793): 1596- 1604. | |
VanRaden P M . Efficient methods to compute genomic predictions. J Dairy Sci, 2008, 91 (11): 4414- 4423. | |
Wang C , Prakapenka D , Wang S , et al. GVCBLUP:a computer package for genomic prediction and variance component estimation of additive and dominance effects. BMC Bioinformatics, 2014, 15 (1): 270. | |
Wang L , Cui J , Jin B , et al. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proc Natl Acad Sci USA, 2020, 117 (4): 2201- 2210. | |
Wimmer V , Albrecht T , Auinger H J , et al. Synbreed:a framework for the analysis of genomic prediction data using R. Bioinformatics, 2012, 28 (5): 2086- 2087. | |
Wong C K , Bernardo R . Genomewide selection in oil palm:increasing selection gain per unit time and cost with small populations. Theor Appl Genet, 2008, 116 (6): 815- 824. | |
Xu Y , Wang X , Ding X , et al. Genomic selection of agronomic traits in hybrid rice using an NCII population. Rice, 2018, 11 (1): 32. | |
Yi N , Xu S . Bayesian LASSO for quantitative trait loci mapping. Genetics, 2008, 179 (2): 1045- 1055. | |
Zapata-Valenzuela J , Whetten R W , Neale D , et al. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. G3 (Bethesda), 2013, 3 (5): 909- 916. | |
Zimin A , Stevens K A , Crepeau M W , et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics, 2014, 196 (3): 875- 890. | |
Zimin A V , Stevens K A , Crepeau M W , et al. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience, 2017, 6 (1): 1- 4. |
[1] | 胥 猛;潘惠新 张 博 王树东 黄敏仁. 林木遗传改良中的分子生物学研究进展[J]. 林业科学, 2009, 12(1): 136-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||