林业科学 ›› 2024, Vol. 60 ›› Issue (12): 72-82.doi: 10.11707/j.1001-7488.LYKX20230588
收稿日期:
2023-12-02
出版日期:
2024-12-25
发布日期:
2025-01-02
通讯作者:
郭素娟
E-mail:haironglai@126.com
基金资助:
Hairong Lai1,2(),Sujuan Guo1,2,*
Received:
2023-12-02
Online:
2024-12-25
Published:
2025-01-02
Contact:
Sujuan Guo
E-mail:haironglai@126.com
摘要:
目的: 探明不同板栗品种坚果果皮结构特征及与其腐烂指数的相关关系,筛选影响板栗腐烂的重要果皮结构指标,为板栗耐腐种质资源评价、筛选和科学贮藏提供参考依据。方法: 以种植于河北省迁西县的6个板栗品种(‘荔波早栗’‘八月红’‘明拣’‘泰栗1号’‘燕山早丰’和‘大板红’)坚果为试验材料,进行180天低温(0~2 ℃)贮藏试验,每隔30天调查坚果腐烂情况。在贮藏前取完好果,贮藏中取腐烂果的果皮进行固定,采用石蜡切片法观察不同板栗品种坚果的果皮结构及差异、贮藏期间腐烂果果皮的结构变化,并对完好果、腐烂果的果皮结构指标与腐烂指数进行相关性分析。结果: 1) 不同板栗品种在贮藏期间的腐烂程度存在显著差异。‘明拣’‘泰栗1号’‘燕山早丰’和‘大板红’较耐贮藏,腐烂指数平均为9.35%,而‘八月红’和‘荔波早栗’较易腐烂,腐烂指数分别达到23.53%和21.63%; 2) 不同板栗品种坚果的果皮结构存在显著差异。‘明拣’‘泰栗1号’‘燕山早丰’和‘大板红’的角质层厚,表皮细胞小且形状规则,中果皮层和内果皮层致密性高;‘八月红’和‘荔波早栗’的角质层薄,表皮细胞较大,‘八月红’的表皮细胞层存在明显间隙,‘荔波早栗’的表皮细胞层虽较为紧密,但中果皮层和内果皮层致密性差。与完好果相比,腐烂果的角质层厚度显著下降,表皮细胞层、中果皮层和内果皮层间隙率增加,果皮结构致密性显著下降。就品种而言,‘荔波早栗’和‘八月红’腐烂果的角质层几乎消失,表皮层破坏严重,中果皮层内薄壁细胞的胞壁分解,出现大量空腔,而‘明拣’‘泰栗1号’‘燕山早丰’和‘大板红’腐烂果的角质层仍保持一定厚度,表皮细胞结构仍较为完整,但中、内果皮层出现较多空腔;3) 相关性分析表明,腐烂指数与完好果和腐烂果的角质层厚度均呈显著负相关(P<0.05),与表皮细胞层间隙率和中内果皮层间隙率呈显著正相关(P<0.05),与表皮细胞长宽比呈负相关,与其他指标无明显相关性;4) 基于角质层厚度、表皮细胞长宽比、表皮细胞层和中、内果皮层的细胞间隙大小4个指标,利用隶属函数法综合评价发现,6个板栗品种的耐腐性由强至弱排序为‘明拣’>‘泰栗1号’>‘燕山早丰’>‘大板红’>‘荔波早栗’>‘八月红’。结论: 板栗果皮的角质层厚度、表皮细胞长宽比、表皮细胞层和中、内果皮层的细胞间隙大小与腐烂发生密切相关,以上4个指标可作为判定板栗坚果耐腐性的重要参考。
中图分类号:
赖海荣,郭素娟. 不同板栗品种坚果果皮结构差异及其与腐烂指数的相关性分析[J]. 林业科学, 2024, 60(12): 72-82.
Hairong Lai,Sujuan Guo. Differences in Peel Structure and Correlation Analysis with Decay Index of Different Chinese Chestnut (Castanea mollissima) Varieties[J]. Scientia Silvae Sinicae, 2024, 60(12): 72-82.
图2
不同板栗品种坚果的果皮结构特征 a:‘荔波早栗’ ‘Libozaoli’;b:‘八月红’ ‘Bayuehong’;c:‘明拣’ ‘Mingjian’;d:‘泰栗1号’ ‘Taili 1’;e:‘燕山早丰’ ‘Yanshanzaofeng’;f:‘大板红’ ‘Dabanhong’。CU:角质层 Cuticle;EC:表皮细胞层 Epidermal cell layer;PA:栅栏组织层 Palisade tissue layer;EX:外果皮层 Exocarp;ME:中果皮层;EN:内果皮层 Endocarp;NH:非腺毛 Non-glandular hairs。Bar=100 μm."
表3
不同板栗品种完好果与腐烂果的果皮各层厚度①"
品种 Varieties | 果实状态 State of fruit | 角质层 Cuticle/μm | 表皮层 Epidermal/μm | 栅栏组织层 Palisade/μm | 外果皮层 Exocarp/μm | 中果皮层 Medocarp/μm | 内果皮层 Endocarp/μm | 果皮层 Total peel/μm |
‘荔波早栗’ ‘Libozaoli’ | 完好果 Healthy fruit | 1.35±0.05 C | 13.55±1.57 A | 110.35±4.23 C | 123.90±5.80 CD | 451.94±8.40 A | 27.48±3.39 B | 604.67±23.44 A |
腐烂果 Rotten fruit | 0.33±0.14 D | 7.14±0.22 B | 100.32±8.79 C | 107.79±3.87 C | 328.32±9.07 B | 5.73±2.35 C | 441.84±7.45 C | |
‘八月红’ ‘Bayuehong’ | 完好果 Healthy fruit | 0.86±0.11 D | 10.52±1.12 B | 187.44±7.46 A | 197.96±8.58 A | 254.36±14.70 D | 46.06±11.58 A | 499.24±34.97 B |
腐烂果 Rotten fruit | 0.37±0.26 D | 9.43±2.31 A | 200.25±6.03 A | 210.05±3.78 A | 318.89±24.20 B | 9.86±2.98 B | 538.80±13.68 B | |
‘明拣’ ‘Mingjian’ | 完好果 Healthy fruit | 2.41±0.04 B | 6.77±1.44 C | 110.09±4.33 C | 116.74±5.77 D | 249.24±4.26 D | 8.97±1.73 C | 377.36±11.80 C |
腐烂果 Rotten fruit | 2.34±0.29 A | 6.60±0.48 C | 131.89±9.20 B | 140.83±5.34 B | 430.71±4.25 A | 8.88±1.75 B | 580.42±7.37 A | |
‘泰栗1号’ ‘Taili 1’ | 完好果 Healthy fruit | 3.09±0.06 A | 7.79±0.48 C | 123.30±5.88 B | 131.09±6.36 BC | 218.67±9.76 E | 9.87±1.17 C | 362.68±17.35 C |
腐烂果 Rotten fruit | 2.31±0.35 A | 8.43±0.35 AB | 130.39±6.23 B | 141.13±4.17 B | 306.84±12.84 B | 9.53±0.67 B | 457.50±7.76 C | |
‘燕山早丰’ ‘Yanshanzaofeng’ | 完好果 Healthy fruit | 2.38±0.07 B | 7.62±1.10 C | 129.36±3.28 B | 136.98±4.38 B | 328.39±3.66 C | 28.77±0.85 B | 496.52±8.96 B |
腐烂果 Rotten fruit | 1.93±0.32 B | 7.82±0.72 B | 132.48±1.04 B | 142.23±0.95 B | 297.05±4.62 B | 11.50±0.28 A | 450.78±4.21 C | |
‘大板红’ ‘Dabanhong’ | 完好果 Healthy fruit | 1.58±0.06 C | 4.43±0.90 D | 103.11±3.04 C | 107.54±3.94 E | 381.06±9.80 B | 9.38±1.78 B | 499.56±15.58 B |
腐烂果 Rotten fruit | 1.24±0.12 C | 5.15±0.53 D | 121.43±2.02 B | 127.82±1.12 B | 299.26±7.16 B | 9.03±1.48 B | 436.11±6.15 C |
表4
不同板栗品种完好果与腐烂果的果皮结构特征①"
品种 Varieties | 果实状态 State of fruit | 表皮细胞 长度 Epidermal cell length/μm | 表皮细胞 厚度(宽度) Epidermal cell thickness(width)/μm | 表皮细胞 横截面积 Epidermal cell cross-sectional area/μm2 | 表皮细胞 长宽比 Epidermal cell aspect ratio | 表皮细胞层 间隙率 Epidermal cell gap rate(%) | 中、内果皮层 间隙率 Mesocarp and endocarp gap rate(%) |
‘荔波早栗’ ‘Libozaoli’ | 完好果 Healthy fruit | 17.26±1.07 A | 13.55±1.57 A | 233.94±31.10 A | 1.27±0.17 C | 0.29±0.09 B | 0.83±0.25 A |
腐烂果 Rotten fruit | 14.45±1.34 A | 7.14±0.22 C | 103.17±9.45 C | 2.02±0.21 B | 25.33±2.27 B | 20.26±0.85 B | |
‘八月红’ ‘Bayuehong’ | 完好果 Healthy fruit | 13.56±1.87 B | 10.52±1.12 B | 144.06±25.64 B | 1.29±0.21 C | 0.67±0.16 A | 0.61±0.22 B |
腐烂果 Rotten fruit | 10.84±2.43 B | 9.43±2.31 A | 102.22±18.76 C | 1.15±0.41 D | 36.36±3.24 A | 35.10±1.14 A | |
‘明拣’ ‘Mingjian’ | 完好果 Healthy fruit | 19.04±2.41 A | 6.77±1.44 C | 127.44±27.50 B | 2.95±0.82 A | 0.12±0.03 C | 0.23±0.08 CD |
腐烂果 Rotten fruit | 14.51±1.10 A | 6.60±0.48 D | 95.70±10.19 C | 2.20±0.21 A | 6.86±0.28 D | 14.19±0.51 C | |
‘泰栗1号’ ‘Taili 1’ | 完好果 Healthy fruit | 18.10±2.84 A | 7.79±0.48 C | 141.93±25.91 B | 2.32±0.22 B | 0.16±0.04 C | 0.17±0.03 D |
腐烂果 Rotten fruit | 15.46±1.00 A | 8.43±0.35 B | 130.33±4.63 A | 1.83±0.31 C | 9.76±0.21 C | 15.17±0.55 C | |
‘燕山早丰’ ‘Yanshanzaofeng’ | 完好果 Healthy fruit | 19.60±3.66 A | 7.62±1.10 C | 151.27±20.82 B | 2.57±0.31 AB | 0.11±0.07 C | 0.27±0.17 CD |
腐烂果 Rotten fruit | 14.81±0.60 A | 7.82±0.72 B | 115.81±8.19 B | 1.89±0.12 C | 6.70±0.18 D | 10.09±0.33 D | |
‘大板红’ ‘Dabanhong’ | 完好果 Healthy fruit | 10.60±2.36 B | 4.43±0.90 D | 47.16±9.05 C | 2.40±0.71 B | 0.05±0.03 D | 0.35±0.04 C |
腐烂果 Rotten fruit | 10.34±1.33 B | 5.15±0.53 E | 53.25±5.98 D | 2.01±0.17 B | 6.00±0.13 D | 7.09±0.25 E |
图6
完好果(A)与腐烂果(B)的果皮结构指标与腐烂指数的相关性分析 PAT:栅栏组织层厚度 Palisade tissue thickness;EXT:外果皮层厚度 Exocarp thickness;MET:中果皮层厚度 Mesocarp thickness;ENT:内果皮层厚度 Endocarp thickness;TL:果皮层总厚度 Total peel thickness;ECL:表皮细胞长度 Epidermal cell length;ECW:表皮细胞层厚度(宽度) Epidermal cell thickness (width);ECLW:表皮细胞长/宽比 Epidermal cell thickness Length/width ratio;SCT:角质层厚度 Cuticle thickness;EPCA:表皮细胞横截面积 Epidermal cell cross-sectional area;ECGR:表皮细胞层间隙率 Epidermal cell gap rate;MEGR:中、内果皮层间隙率 Mesocarp and endocarp gap rate;DI:腐烂指数 Decay index。* 表示数据显著线性相关(P<0.05); ** 表示数据极显著线性相关(P<0.01). * indicates a significant linear correlation in the data (P<0.05); ** indicates an extremely significant linear correlation in the data (P<0.01)."
表5
不同板栗品种果皮结构指标变化隶属函数值"
品种名称 Varieties | 角质层厚度 Cuticle thickness | 表皮细胞层间隙率 Epidermal cell gap rate | 中、内果皮层间隙率 Mesocarp and endocarp gap rate | 表皮细胞长宽比 Epidermal cell thickness Length/width ratio | 综合得分值 Comprehensive score | 排序 Rank |
‘荔波早栗’ ‘Libozaoli’ | 0.22 | 0.61 | 0.00 | 0.00 | 0.19 | 5 |
‘八月红’ ‘Bayuehong’ | 0.00 | 0.00 | 0.33 | 0.01 | 0.09 | 6 |
‘明拣’ ‘Mingjian’ | 0.70 | 0.89 | 0.91 | 1.00 | 0.88 | 1 |
‘泰栗1号’ ‘Taili 1’ | 1.00 | 0.82 | 1.00 | 0.63 | 0.86 | 2 |
‘燕山早丰’ ‘Yanshanzaofeng’ | 0.68 | 0.90 | 0.85 | 0.77 | 0.80 | 3 |
‘大板红’ ‘Dabanhong’ | 0.32 | 1.00 | 0.73 | 0.67 | 0.68 | 4 |
权重 Weight | 0.24 | 0.23 | 0.26 | 0.27 |
董 乐, 李 田, 黄文印, 等. 浙江红花油茶优株筛选与综合评价. 中南林业科技大学学报, 2021, 41 (11): 35- 45. | |
Dong L, Li T, Huang W Y, et al. Selection and comprehensive evaluation of superior individual plant in Camellia chekiangoleosa. Journal of Central South University of Forestry & Technology, 2021, 41 (11): 35- 45. | |
高 萌, 屈 魏, 冉 昪, 等. '徐香'与'海沃德'猕猴桃冷藏期间组织结构与生理变化差异. 园艺学报, 2020, 47 (7): 1289- 1300. | |
Gao M, Qu W, Ran B, et al. Differences in tissue structure and physiological changes of ’Xuxiang’and 'Hayward’ Kiwifruit fruits during cold storage. Acta Horticulturae Sinica, 2020, 47 (7): 1289- 1300. | |
龚晟兰, 杨治华, 吴富敏, 等. 植物精油结合壳聚糖涂膜对板栗采后的保鲜效果. 食品工业科技, 2021, 42 (22): 314- 320. | |
Gong S L, Yang Z H, Wu F M, et al. Effects of plant essential oils treatment combined with chitosan coating on fresh-keeping of post-harvested chestnuts. Science and Technology of Food Industry, 2021, 42 (22): 314- 320. | |
黄婉莉, 郑诚乐, 王星剑, 等. 低温贮藏荔枝果皮结构与采后失水、褐变的关系研究. 中国果树, 2017, (1): 46- 48,102. | |
Huang W L, Zheng C L , Wang X J, et al. Study on the relationship between pericarp structure and postharvest water loss and browning of Litchi chinensis stored at low temperature. China Fruits, 2017, (1): 46- 48,102. | |
韩冬梅, 黄石连, 欧阳思颖, 等. 提升龙眼果实耐贮性的果期病害防治与养分优化管理. 中国农业科学, 2022, 55 (21): 4279- 4293.
doi: 10.3864/j.issn.0578-1752.2022.21.014 |
|
Han D M, Huang S L, Ouyang S Y, et al. Optimizing management mode of disease and nutrient during the entire fruit development for improving postharvest storability of Longan fruit. Scientia Agricultura Sinica, 2022, 55 (21): 4279- 4293.
doi: 10.3864/j.issn.0578-1752.2022.21.014 |
|
蒋侬辉, 陈金印, 徐小彪, 等. 板栗贮藏技术及采后生理研究进展. 江西农业大学学报, 2001, 23 (3): 401- 405.
doi: 10.3969/j.issn.1000-2286.2001.03.024 |
|
Jiang N H, Chen J Y, Xu X B, et al. Research progress in storage technology and postharvest physiology of chestnut. Acta Agriculturae Universitis Jiangxiensis, 2001, 23 (3): 401- 405.
doi: 10.3969/j.issn.1000-2286.2001.03.024 |
|
李宏建, 刘 志, 王 宏, 等. 苹果果实组织结构与果实失重率和硬度变化的关系. 果树学报, 2013, 30 (5): 753- 758. | |
Li H J, Liu Z, Wang H, et al. Study on the relationship between organizational structure and firmness, weight-lose rate of apple fruit. Journal of Fruit Science, 2013, 30 (5): 753- 758. | |
李治梅, 张玉星, 许建锋, 等. 鸭梨、黄金梨果实结构与耐贮性的关系. 果树学报, 2006, 23 (1): 108- 110.
doi: 10.3969/j.issn.1009-9980.2006.01.025 |
|
Li Z M, Zhang Y X, Xu J F, et al. Effects of fruit tissue structure of Yali and Whangkeumbae pear cultivars on the fruit storability. Journal of Fruit Science, 2006, 23 (1): 108- 110.
doi: 10.3969/j.issn.1009-9980.2006.01.025 |
|
林河通, 席玙芳, 陈绍军, 等. 2002. 龙眼果皮形态结构比较观察及其与果实耐贮运的关系. 广西植物, 22(5): 413–419, 424–484. | |
Lin H T, Xi Y F, Chen S J, et al. 2002. A comparative observation on pericarp mor-phology and structure and its relationship to storability and transport of Longan fruit. Guihaia, 22(5): 413–419, 424–484. [in Chinese] | |
林建城, 林河通, 郭振国, 等. 枇杷不同品种果实形态结构的比较及其与耐贮藏性的关系. 热带作物学报, 2009, 30 (1): 53- 58.
doi: 10.3969/j.issn.1000-2561.2009.01.011 |
|
Lin J C, Lin H T, Guo Z G, et al. Morphology and structure and their relationships to storability of loquat fruits(Eriobotrya japonica lindl. ). Chinese Journal of Tropical Crops, 2009, 30 (1): 53- 58.
doi: 10.3969/j.issn.1000-2561.2009.01.011 |
|
刘 恋, 唐志鹏, 李菲菲, 等. ‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’贮藏期品质、贮藏特性及果皮转录组分析. 中国农业科学, 2021, 54 (20): 4421- 4433.
doi: 10.3864/j.issn.0578-1752.2021.20.015 |
|
Liu L, Tang Z P, Li F F, et al. Fruit quality in storage, storability and peel transcriptome analysis of Rong’an kumquat, Huapi kumquat and cuimi kumquat. Scientia Agricultura Sinica, 2021, 54 (20): 4421- 4433.
doi: 10.3864/j.issn.0578-1752.2021.20.015 |
|
潘洵操, 谢宝贵. 荔枝果皮结构与果实贮藏性能关系的探讨. 广西植物, 1997, 17 (1): 79- 84. | |
Pan X C, Xie B G. Study on the Relationship between the Peel Structure and Storage Quality of litchi Fruits. Guihaia, 1997, 17 (1): 79- 84. | |
屈红霞, 孙谷畴, 蒋跃明. 2001. 龙眼果皮显微结构与果实耐贮性关系探讨. 武汉植物学研究, 19(1): 83–85, 90–94. | |
Qu H X, Sun G C, Jiang Y M. 2001. Study on the relationship between the peel structure and keeping quality of Longan fruit. Journal of Wuhan Botanical Research, 19(1): 83–85, 90–94. [in Chinese] | |
苏丽娜, 王小庆. 板栗壳生药研究及有效成分没食子酸、绿原酸、芦丁含量测定. 食品工业科技, 2016, 37 (21): 323- 328. | |
Su L N, Wang X Q. Pharmacognostical studies of chestnut epicarp and determination of active ingredients including gallic acid, chlorogenic acid and rutin. Science and Technology of Food Industry, 2016, 37 (21): 323- 328. | |
田爱林. 2021. 猕猴桃新优系‘金福’采后生理、质地及组织结构特性的分析. 杨凌: 西北农林科技大学. | |
Tian A L. 2021. Analysis of postharvest physiology, texture and tissue structure characteristics of a new kiwifruit superior line' Jinfu'. Yangling: Northwest A & F University.[in Chinese] | |
王利娜, 赵 文, 孙 佳, 等. 南疆4个地区枣园土壤养分状况分析及肥力评价. 经济林研究, 2022, 40 (2): 144- 152. | |
Wang L N, Zhao W, Sun J, et al. Analysis of soil nutrients and evaluation of fertility in jujube orchards in four regions of southern Xinjiang. Non-wood Forest Research, 2022, 40 (2): 144- 152. | |
王晓明, 唐时俊, 李昌珠, 等. 板栗贮藏期坚果腐烂机理的研究. 果树学报, 2001, 18 (2): 98- 103.
doi: 10.3969/j.issn.1009-9980.2001.02.010 |
|
Wang X M, Tang S J, Li C Z, et al. Mechanism of chestnut rotting during storage. Journal of Fruit Science, 2001, 18 (2): 98- 103.
doi: 10.3969/j.issn.1009-9980.2001.02.010 |
|
瓮红利. 2006. 不同品种龙眼果实耐贮性的生物学基础研究. 福州: 福建农林大学. | |
Weng H L. 2006. Studies on the basic biology of storability of longan fruit among cultivars. Fuzhou: Fujian Agriculture and Forestry University.[in Chinese] | |
徐 鑫, 顾仁勇, 陶宏志, 等. 弱酸性电位水结合艾叶-石榴皮提取物对板栗涂膜保鲜效果的影响. 食品与发酵工业, 2021, 47 (20): 239- 246. | |
Xu X, Gu R Y, Tao H Z, et al. Effect of slightly acidic electrolyzed water combined with Artemisia argyi-pomegranate peel extract treatment on the preservation of chestnuts. Food and Fermentation Industries, 2021, 47 (20): 239- 246. | |
闫 格. 2017. 板栗低温贮藏条件的研究. 长沙: 湖南农业大学. | |
Yan G. 2017. Study on low temperature storage conditions of chestnut. Changsha: Hunan Agricultural University.[in Chinese] | |
易润华, 吴光金. 板栗腐烂机理及防腐保鲜技术的研究. 中南林学院学报, 2000, 20 (2): 44- 50. | |
Yi R H, Wu G J. Research for the mechanism of Chinese chestnut putridity and the antiseptic and fresh keeping technique. Journal of Central South Forestry Universith, 2000, 20 (2): 44- 50. | |
袁 雪. 2018. 不同品种青皮核桃耐贮性比较及其影响因素研究. 杨凌: 西北农林科技大学. | |
Yuan X. 2018. Study on the Storability Comparison among Different Fresh In-husk Walnut Cultivars and the Related Influencing Factors. Yangling: Northwest A & F University.[in Chinese] | |
张娥珍, 廖 芬, 阳仁桂, 等. 17个品种芒果后熟过程中果皮解剖结构比较分析. 热带作物学报, 2016, 37 (11): 2238- 2243.
doi: 10.3969/j.issn.1000-2561.2016.11.032 |
|
Zhang E Z, Liao F, Yang R G, et al. Comparison of cell structure of the fruit peel in seventeen varieties of Mangifera indica L during different postharvest stages. Chinese Journal of Tropical Crops, 2016, 37 (11): 2238- 2243.
doi: 10.3969/j.issn.1000-2561.2016.11.032 |
|
张亦弛, 郭素娟. 2种生长延缓剂对板栗枝条生长和叶片碳氮代谢物积累的影响. 林业科学, 2020, 56 (5): 29- 36. | |
Zhang Y C, Guo S J. Effects of two growth retardants on the growth of chestnut branches and the accumulation of carbon and nitrogen metabolites in Leaves. Scientia silvae sinicae, 2020, 56 (5): 29- 36. | |
张宇和. 2005. 中国果树志-板栗 榛子卷. 北京: 中国林业出版社. | |
Zhang Y H. 2005. China fruit zhi-chestnut hazelnut roll. Beijing: China Forestry Publishing House. [in Chinese] | |
赵帅琪, 张伟伟, 牛俊芳, 等. 森林草莓和栽培草莓在果实发育和成熟过程中细胞壁变化的比较. 植物生理学报, 2021, 57 (12): 2323- 2336. | |
Zhao S Q, Zhang W W, Niu J F, et al. Comparison of cell wall changes of Fragaria vesca and Fragaria × Ananassa during fruit development and ripening. Plant Physiology Journal, 2021, 57 (12): 2323- 2336. | |
周慧娟, 叶正文, 王 戈, 等. 采前套袋对黄肉桃货架期果皮超微结构的影响. 果树学报, 2016, 33 (8): 1000- 1006. | |
Zhou H J, Ye Z W, Wang G, et al. Effect of preharvest bagging on ultrastructural changes of yellow-peach pericarp during shelf-life. Journal of Fruit Science, 2016, 33 (8): 1000- 1006. | |
周会玲, 李嘉瑞. 葡萄果实组织结构与耐贮性的关系. 园艺学报, 2006, 33 (1): 28- 32.
doi: 10.3321/j.issn:0513-353X.2006.01.006 |
|
Zhou H L, Li J R. The relationship between fruit texture and storage character in grapes. Acta Horticulturae Sinica, 2006, 33 (1): 28- 32.
doi: 10.3321/j.issn:0513-353X.2006.01.006 |
|
Chu W J, Gao H Y, Chen H J, et al. Effects of cuticular wax on the postharvest quality of blueberry fruit. Food Chemistry, 2018, 239, 68- 74. | |
Fernández-Muñoz R, Heredia A, Domínguez E. The role of cuticle in fruit shelf-life. Current Opinion in Biotechnology, 2022, 78, 102802.
doi: 10.1016/j.copbio.2022.102802 |
|
Kendr G, Ozturk A. Castanea sativa Mill. (chestnut), fruit and leaf anatomy. Journal of Ankara University Faculty of Pharmacy, 2016, 40 (2): 1- 18. | |
Konarska A. Morphological, histological and ultrastructural changes in fruit epidermis of apple Malus domestica cv. ligol (Rosaceae) at fruit set, maturity and storage. Acta Biologica Cracoviensia s Botanica, 2015, 56 (2): 35- 48. | |
Liu Z W, Yan X W, Wang P W, et al. Changes in fruit texture and cell structure of different pumpkin varieties (lines) during storage. Postharvest Biology and Technology, 2024, 208, 112647.
doi: 10.1016/j.postharvbio.2023.112647 |
|
Macnee N C, Rebstock R, Hallett I C, et al. A review of current knowledge about the formation of native peridermal exocarp in fruit. Functional Plant Biology, 2020, 47 (12): 1019.
doi: 10.1071/FP19135 |
[1] | 王舒扬,田力,周顺陶,储月娥,梅迪,袁佳秋,余延浩,洑香香. 多倍化对青钱柳叶形态、光合性能和次生代谢产物积累的影响[J]. 林业科学, 2024, 60(8): 120-131. |
[2] | 刘成林,郭素娟. 气候变化下板栗适宜性分析及分布预测[J]. 林业科学, 2024, 60(4): 109-118. |
[3] | 赵娟红,米娟娟,李治刚,包晗,黄婷,秦垦,杨涓,郑国琦. 宁夏枸杞果实性状和预处理对果实制干的影响[J]. 林业科学, 2024, 60(3): 35-44. |
[4] | 李彤彤,郭素娟,李艳华. 基于叶片形态数字化分析的板栗品种鉴别[J]. 林业科学, 2023, 59(3): 115-126. |
[5] | 马雅莉,郭素娟,廖逸宁,王芳芳. 板栗不同冠层球苞负载量对光合特性及果实品质的影响[J]. 林业科学, 2022, 58(9): 90-97. |
[6] | 吕庚鑫,孟益德,庆军,何凤,刘攀峰,杜庆鑫,杜红岩,杜兰英,王璐. ‘华仲6号’杜仲嫩枝扦插生根的解剖及生理变化[J]. 林业科学, 2022, 58(2): 113-124. |
[7] | 陈晨,喻方圆. 林木花芽分化研究进展[J]. 林业科学, 2020, 56(9): 119-129. |
[8] | 刘洪凯,陈旭,张明忠,王强,王延平. 鲁中丘陵山地干旱生境上11个树种的细根解剖特征与耐旱策略[J]. 林业科学, 2020, 56(7): 185-193. |
[9] | 张亦弛,郭素娟. 2种生长延缓剂对板栗枝条生长和叶片碳氮代谢物积累的影响[J]. 林业科学, 2020, 56(5): 29-36. |
[10] | 韩彪,李文清,郭素娟,陆璐,解孝满. 基于差示扫描量热技术的板栗胚轴低温保存技术及临界含水量[J]. 林业科学, 2020, 56(3): 21-27. |
[11] | 杜常健, 孙佳成, 陈炜, 纪敬, 江泽平, 史胜青. 侧柏古树实生树和嫁接树的扦插生理和解剖特性比较[J]. 林业科学, 2019, 55(9): 41-49. |
[12] | 尹淑艳, 李波, 周成刚, 张卫光, 谢丽霞, 刘永杰. 基于28S rDNA分析板栗和杉木上针叶小爪螨物种分化原因[J]. 林业科学, 2019, 55(4): 122-128. |
[13] | 李建波, 贾会霞, 张进, 刘伯斌, 胡建军, 王丽娟, 卢孟柱. 毛白杨PtoWOX4a基因过表达对次生生长的影响[J]. 林业科学, 2018, 54(2): 52-59. |
[14] | 苌姗姗, 石洋, 刘元, 胡进波. 应拉木胶质层解剖结构及化学主成分结构特征[J]. 林业科学, 2018, 54(2): 153-161. |
[15] | 黄绢, 陈存, 张伟溪, 丁昌俊, 苏晓华, 黄秦军. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5): 8-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||