欢迎访问林业科学,今天是

林业科学 ›› 2023, Vol. 59 ›› Issue (9): 55-65.doi: 10.11707/j.1001-7488.LYKX20220408

• • 上一篇    下一篇

兴安落叶松生态系统CO2浓度及其δ13C动态对环境因子的响应

张欣1,2, 张秋良2,3, 孙守家4, 王冰2   

  1. 1. 内蒙古大学生态与环境学院 呼和浩特 010021;
    2. 内蒙古农业大学林学院 呼和浩特 010019;
    3. 内蒙古大兴安岭森林生态系统国家野外科学观测研究站 根河 022350;
    4. 中国林业科学研究院林业研究所 北京 100091
  • 收稿日期:2022-06-14 修回日期:2023-03-13 发布日期:2023-10-28
  • 通讯作者: 张秋良
  • 基金资助:
    内蒙古自治区科技计划项目(2023YFDZ0026);国家自然科学基金项目( 32060262,32260389)。

CO2 Concentration and the δ13C Dynamics in Larix gmelinii Ecosystem in Response to Environmental Factors

Zhang Xin1,2, Zhang Qiuliang2,3, Sun Shoujia4, Wang Bing2   

  1. 1. College of Ecology and Environment, Inner Mongolia University Hohhot 010021;
    2. College of Forestry, Inner Mongolia Agricultural University Hohhot 010019;
    3. National Field Scientific Observation and Research Station of Greater Khingan Forest Ecosystem Genhe 022350;
    4. Research Institute of Forestry, Chinese Academy of Forestry Beijing 100091
  • Received:2022-06-14 Revised:2023-03-13 Published:2023-10-28

摘要: 目的 探明环境因子对兴安落叶松原始林生态系统CO2浓度及其δ13C动态的影响,深入理解生态系统的碳交换过程,为模拟和预测全球变化与生态系统之间的互馈机制以及科学评估寒温带森林生态系统碳汇能力提供参考。方法 采用离轴积分腔输出光谱技术对兴安落叶松生态系统不同物候期、不同高度的CO2浓度及其δ13C进行连续高频观测,并分析环境因子与CO2浓度变化的关系。结果 1) 兴安落叶松生态系统不同高度的CO2浓度在生长季和日尺度上均呈单峰变化,峰值分别出现在展叶期(522.34 μmol·mol-1)和凌晨(782.81 μmol·mol-1),谷值分别出现在落叶期(406.07 μmol·mol-1)和中午(379.72 μmol·mol-1);δ13C变化趋势与CO2浓度相反;2)CO2浓度随垂直高度升高而减小,δ13C随垂直高度升高而增大;不同高度的CO2浓度及其δ13C具有明显成层现象,夜间大气稳定性增加(理查逊数Ri ≥ 0.083)会加剧冠层内外的差异;3) 在0.5 h尺度上,影响昼夜各高度CO2浓度变化的主要因子为空气温度(Ta)(0.714 < PC < 1.288);在日尺度上,决定生长季不同高度CO2浓度变化的主要因子为土壤5 cm温度(Ts5)(0.473 < PC < 0.718)。结论 兴安落叶松生态系统不同高度的δ13C与CO2浓度呈极显著负相关,夜间大气稳定性增加会加剧二者的成层现象。土壤因子对兴安落叶松生态系统不同物候期、不同高度CO2浓度变化的影响程度高于气象因子,土壤温度对其的影响程度大于土壤水分。研究区地处全球气候变化敏感区域,冻土是该区森林植被不可或缺的环境因素,全球变暖将通过直接的温度效应以及间接改变土壤理化性质和生物过程对兴安落叶松生态系统的碳交换过程产生显著影响。

关键词: CO2浓度, 碳同位素, 环境因子, 兴安落叶松

Abstract: Objective This study aims to explore the influence mechanism of environmental factors on the CO2 concentration and δ13C dynamics in Larix gmelinii ecosystem, which would help to deeply understand the process and mechanism of carbon exchange in ecosystems, so as to provide reference for simulating and predicting the mutual feedback mechanism between global change and ecosystems, as well as for scientific assessment of carbon sink capacity of cold temperate forest ecosystems.Method The off-axis integral cavity output spectroscopy was used to perform continuous high-frequency observations to the CO2 concentration and δ13C value at different heights in different phenological periods of L. gmelinii ecosystem, and thereby analyze the relationship between environmental factors and CO2 concentration. Result 1) The CO2 concentration at different heights of L. gmelinii ecosystem showed a single peak variation in the growth season and daily scale. The peak value appeared in the leaf spreading period (522.34 μmol·mol-1) and at night (782.81 μmol·mol-1), respectively. The valley value appeared in the leaf falling period (406.07 μmol·mol-1) and at noon (379.72 μmol·mol-1), respectively. The δ13C variation was opposite to CO2 concentration. 2) The CO2 concentration decreased with the increase of vertical height, while δ13C increased with the increase of vertical height. The CO2 concentration and δ13C at different heights had obvious stratification. The increase of atmospheric stability at night (Ri ≥ 0.083) increased the difference inside and outside the canopy. 3) On the 0.5 h scale, air temperature (Ta) was the main factor affecting the variation of CO2 concentration at different heights in day and night (0.714 < PC < 1.288). On a daily scale, soil temperature (Ts5) in 5 cm depth layer was the main factor determining the variation of CO2 concentration at different heights in the growing season (0.473 < PC < 0.718). Conclusion There is a very significant negative correlation between δ13C and CO2 concentration at different heights of L. gmelinii ecosystem. The increase of atmospheric stability at night aggravates their layering phenomenon. The influence level of soil factors on the variation of CO2 concentration at different heights in different phenological periods of L. gmelinii ecosystem is greater than that of meteorological factors. The soil temperature has greater influence on the variation of CO2 concentration than the soil water. The study area is located in a sensitive area to global climate change. Frozen soil is an indispensable environmental factor for forest vegetation in this area. Global warming will have a significant impact on the carbon exchange process of L. gmelinii ecosystem through direct temperature effect and indirect changes in soil physical and chemical properties and biological processes.

Key words: CO2 concentration, carbon isotope, environmental factors, Larix gmelinii

中图分类号: