|  | 何 嘉. 2019. 基于深度学习的野生动物智能检测与识别. 深圳: 深圳大学. | 
																													
																						|  | He J. 2019. Wildlife smart detection and recognition based on deep learning. Shenzhen: Shenzhen University.[in Chinese] | 
																													
																						|  | 刘文定, 李安琪, 张军国, 等. 基于 ROI-CNN 的赛罕乌拉国家级自然保护区陆生野生动物自动识别. 北京林业大学学报, 2018, 40 (8): 123- 131. | 
																													
																						|  | Liu W D, Li A Q, Zhang J G, et al. Automatic identification method for terrestrial wildlife in Saihanwula National Nature Reserve in Inner Mongolia of northern China based on ROI-CNN. Journal of Beijing Forestry University, 2018, 40 (8): 123- 131. | 
																													
																						|  | 邱志斌, 石大寨, 况燕军, 等. 基于深度迁移学习的输电线路涉鸟故障危害鸟种图像识别. 高电压技术, 2021, 47 (11): 1- 15. doi: 10.13336/j.1003-6520.hve.20210063
 | 
																													
																						|  | Qiu Z B, Shi D Z, Kuang Y J, et al. Image recognition of harmful bird species related to transmission line outages based on deep transfer learning. High Voltage Engineering, 2021, 47 (11): 1- 15. doi: 10.13336/j.1003-6520.hve.20210063
 | 
																													
																						|  | 束祖飞, 何文通, 李 健, 等. 2021. 广东车八岭国家级自然保护区生物多样性综合监测信息服务平台. 数据与计算发展前沿, 3(6): 127−141. | 
																													
																						|  | Shu Z F, He W T, Li J, et al. A comprehensive monitoring information service platform for biodiversity at Guangdong Chebaling National Nature Reserve. Frontiers of Data and Computing, 3(6): 127−141.[in Chinese] | 
																													
																						|  | 王柯力, 袁红春. 2018. 基于迁移学习的水产动物图像识别方法. 计算机应用, 38(5): 1304−1308, 1326. | 
																													
																						|  | Wang K L, Yuan H C. 2018. Aquatic animal image classification method based on transfer learning. Journal of Computer Applications, 38(5): 1304−1308, 1326.[in Chinese] | 
																													
																						|  | 杨国国, 鲍一丹, 刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别. 农业工程学报, 2017, 33 (6): 156- 162. | 
																													
																						|  | Yang G G, Bao Y D, Liu Z Y. Location and recognition of tea pests based on image saliency analysis and convolution neural network. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (6): 156- 162. | 
																													
																						|  | 于莉莉. 2017. 陆生野生动物保护对生物多样性的影响机理及对策. 南京: 南京林业大学. | 
																													
																						|  | Yu L L. 2017. Effects of terrestrial wildlife conservation on biodiversity and countermeasures. Nanjing: Nanjing Forestry University.[in Chinese] | 
																													
																						|  | 张 毓, 高雅月, 常峰源, 等. 小样本条件下基于数据扩充和ResNeSt的雪豹识别. 北京林业大学学报, 2021, 43 (10): 89- 99. | 
																													
																						|  | Zhang M, Gao Y Y, Chang F Y, et al. Panthera unica recognition based on data expansion and ResNeSt with few samples. Journal of Beijing Forestry University, 2021, 43 (10): 89- 99. | 
																													
																						|  | Azulay A, Weiss Y. 2018. Why do deep convolutional networks generalize so poorly to small image transformations? arXiv: 1805.12177. | 
																													
																						|  | Cubuk E D, Zoph B, Shlens J, et al. 2020. Randaugment: Practical automated data augmentation with a reduced search space. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 702−703. | 
																													
																						|  | Gomez V A, Salazar A, Vargas F. Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks. Ecological Informatics, 2017, 41, 24- 32. doi: 10.1016/j.ecoinf.2017.07.004
 | 
																													
																						|  | Guo Y, Rothfus T A, Ashour A S, et al. Varied channels region proposal and classification network for wildlife image classification under complex environment. IET Image Processing, 2019, 14 (4): 585- 591. | 
																													
																						|  | He K, Zhang X, Ren S, et al. 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770−778. | 
																													
																						|  | Hu J, Shen L, Sun G. 2018. Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7132−7141. | 
																													
																						|  | Huang G, Liu Z, Van D M L, et al. 2017. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 4700−4708. | 
																													
																						|  | Krizhevsky A, Sutskever I, Hinton G E. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25. | 
																													
																						|  | Loshchilov I, Hutter F. 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv: 1608.03983. | 
																													
																						|  | Norouzzadeh M S, Nguyen A, Kosmala M, et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences, 2018, 115 (25): E5716- E5725. | 
																													
																						|  | Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 2015, 28, 91- 99. | 
																													
																						|  | Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556. | 
																													
																						|  | Szegedy C, Liu W, Jia Y, et al. 2015. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1−9. | 
																													
																						|  | Szegedy C, Vanhoucke V, Ioffe S, et al. 2016. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818−2826. | 
																													
																						|  | Tan M, Le Q. 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning, 6105−6114. | 
																													
																						|  | Timm M, Maji S, Fuller T. 2018. Large-scale ecological analyses of animals in the wild using computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 1896−1898. | 
																													
																						|  | Willi M, Pitman R T, Cardoso A W, et al. Identifying animal species in camera trap images using deep learning and citizen science. Methods in Ecology and Evolution, 2019, 10 (1): 80- 91. doi: 10.1111/2041-210X.13099
 | 
																													
																						|  | Xie J, Li A, Zhang J, et al. An integrated wildlife recognition model based on multi-branch aggregation and squeeze-and-excitation network. Applied Sciences, 2019, 9 (14): 2794. doi: 10.3390/app9142794
 | 
																													
																						|  | Xie S, Girshick R, Dollár P, et al. 2017. Aggregated residual transformations for deep neural networks. Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition, 1492−1500. | 
																													
																						|  | Zhang R. Making convolutional networks shift-invariant again. International Conference on Machine Learning, 2019, 97, 7324- 7334. |