|  | 鲍 烈, 王曼韬, 刘江川, 等. 基于卷积神经网络的小麦产量预估方法. 浙江农业学报, 2020, 32 (12): 2244- 2252. doi: 10.3969/j.issn.1004-1524.2020.12.16
 | 
																													
																						|  | Bao L, Wang M T, Liu J C, et al. Estimation method of wheat yield based on convolution neural network. Acta Agriculturae Zhejiangensis, 2020, 32 (12): 2244- 2252. doi: 10.3969/j.issn.1004-1524.2020.12.16
 | 
																													
																						|  | 陈宏伟, 宋魁彦. 木蜡油涂饰对家具表面视觉特性的影响研究. 家具与室内装饰, 2021, (4): 43- 45. doi: 10.16771/j.cn43-1247/ts.2021.04.012
 | 
																													
																						|  | Chen H W, Song K Y. Research on the influence of wood wax coating on the visual characteristics of furniture surface. Furniture & Interior Design, 2021, (4): 43- 45. doi: 10.16771/j.cn43-1247/ts.2021.04.012
 | 
																													
																						|  | 陈龙现, 葛浙东, 罗 瑞, 等. 基于CNN的木材内部CT图像缺陷辨识. 林业科学, 2018, 54 (11): 127- 133. doi: 10.11707/j.1001-7488.20181118
 | 
																													
																						|  | Chen L X, Ge Z D, Luo R, et al. Identification of CT image defects in wood based on convolution neural network. Scientia Silvae Sinicae, 2018, 54 (11): 127- 133. doi: 10.11707/j.1001-7488.20181118
 | 
																													
																						|  | 崔明光. 2019. 基于卷积神经网络的木材缺陷识别方法研究. 长春: 长春工业大学. | 
																													
																						|  | Cui M G. 2019. Research on wood defect recognition method based on convolutional neural network. Changchun: Changchun University of Technology.[in Chinese] | 
																													
																						|  | 李 楠. 2018. 一种基于卷积神经网络的轻量级木材图像识别模型研究. 杭州: 浙江农林大学. | 
																													
																						|  | Li N. 2018. Research on lightweight wood image recognition model based on convolutional neural network. Hangzhou: Zhejiang A&F University.[in Chinese] | 
																													
																						|  | 李鑫然, 李书琴, 刘 斌. 基于改进Faster R_CNN的苹果叶片病害检测模型. 计算机工程, 2021, 47 (11): 298- 304. | 
																													
																						|  | Li X R, Li S Q, Liu B. Apple leaf diseases detection model based on improved Faster R_CNN. Computer Engineering, 2021, 47 (11): 298- 304. | 
																													
																						|  | 刘 英, 周晓林, 胡忠康, 等. 基于优化卷积神经网络的木材缺陷检测. 林业工程学报, 2019, 4 (1): 115- 120. | 
																													
																						|  | Liu Y, Zhou X L, Hu Z K, et al. Wood defect recognition based on optimized convolution neural network algorithm. Journal of Forestry Engineering, 2019, 4 (1): 115- 120. | 
																													
																						|  | 吴茂贵, 郁明敏, 杨本法, 等. 2019. Python深度学习: 基于PyTorch. 北京: 机械工业出版社, 307. | 
																													
																						|  | Wu M G, Yu M M, Yang B F, et al. 2019. Python deep learning: based on PyTorch. Beijing: China Machine Press, 307.[in Chinese] | 
																													
																						|  | 张瑞青, 李张威, 郝建军, 等. 基于迁移学习的卷积神经网络花生荚果等级图像识别. 农业工程学报, 2020, 36 (23): 171- 180. doi: 10.11975/j.issn.1002-6819.2020.23.020
 | 
																													
																						|  | Zhang R Q, Li Z W, Hao J J, et al. Image recognition of peanut pod grades based on transfer learning with convolutional neural network. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (23): 171- 180. doi: 10.11975/j.issn.1002-6819.2020.23.020
 | 
																													
																						|  | 赵 畅, 黄艳辉, 卿兰庭. 木蜡油及其在木质家具中的应用进展. 林产工业, 2016, 43 (10): 11- 14. doi: 10.3969/j.issn.1001-5299.2016.10.003
 | 
																													
																						|  | Zhao C, Huang Y H, Qing L T. Hard wax oil and progress of its application in wooden furniture. China Forest Products Industry, 2016, 43 (10): 11- 14. doi: 10.3969/j.issn.1001-5299.2016.10.003
 | 
																													
																						|  | Barmpoutis P, Dimitropoulos K, Barboutis I, et al. Wood species recognition through multidimensional texture analysis. Computers and Electronics in Agriculture, 2018, 144, 241- 248. doi: 10.1016/j.compag.2017.12.011
 | 
																													
																						|  | Fabijańska A, Danek M, Barniak J. Wood species automatic identification from wood core images with a residual convolutional neural network. Computers and Electronics in Agriculture, 2021, 181 (1): 105941. | 
																													
																						|  | Geus A R, da Silva S F, Gontijo A B, et al. An analysis of timber sections and deep learning for wood species classification. Multimedia Tools and Applications, 2020, 79 (45/46): 34513- 34529. | 
																													
																						|  | Han D M, Liu Q G, Fan W G. A new image classification method using CNN transfer learning and web data augmentation. Expert Systems with Applications, 2018, 95, 43- 56. doi: 10.1016/j.eswa.2017.11.028
 | 
																													
																						|  | He K M, Zhang X Y, Ren S Q, et al. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. IEEE, 770-778. | 
																													
																						|  | He T, Lu Y, Jiao L C, et al. Developing deep learning models to automate rosewood tree species identification for CITES designation and implementation. Holzforschung, 2020, 74 (12): 1123- 1133. doi: 10.1515/hf-2020-0006
 | 
																													
																						|  | Howard A, Sandler M, Chen B, et al. 2020. Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South). IEEE, 1314-1324. | 
																													
																						|  | Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2012, 60 (6): 84- 90. | 
																													
																						|  | Martins J, Oliveira L S, Nisgoski S, et al. A database for automatic classification of forest species. Machine Vision and Applications, 2013, 24 (3): 567- 578. doi: 10.1007/s00138-012-0417-5
 | 
																													
																						|  | Nisgoski S, de Oliveira A A, de Muñiz G I B. Artificial neural network and SIMCA classification in some wood discrimination based on near-infrared spectra. Wood Science and Technology, 2017, 51 (4): 929- 942. doi: 10.1007/s00226-017-0915-8
 | 
																													
																						|  | Sandler M, Howard A, Zhu M L, et al. 2018. MobileNetV2: inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA. IEEE, 4510-4520. | 
																													
																						|  | Souza D V, Santos J X, Vieira H C, et al. An automatic recognition system of Brazilian flora species based on textural features of macroscopic images of wood. Wood Science and Technology, 2020, 54 (4): 1065- 1090. doi: 10.1007/s00226-020-01196-z
 | 
																													
																						|  | Wheeler E A, Baas P. Wood identification-a review. IAWA Journal, 1998, 19 (3): 241- 264. doi: 10.1163/22941932-90001528
 | 
																													
																						|  | Zhao P, Cao J. Wood species identification using spectral reflectance feature and optimal illumination radian design. Journal of Forestry Research, 2016, 27 (1): 219- 224. doi: 10.1007/s11676-015-0171-4
 | 
																													
																						|  | Zhao P. Robust wood species recognition using variable color information. Optik - International Journal for Light and Electron Optics, 2013, 124 (17): 2833- 2836. doi: 10.1016/j.ijleo.2012.08.058
 |