|  | 胡鸿, 杨雪清, 吴东亮.  基于北斗位置服务的森林管护及系统研发. 中南林业科技大学学报, 2017. 37 (9): 12- 19. | 
																													
																						|  | Hu H ,  Yang X Q ,  Wu D L .  Forest manage and protect with location based service and system research and development. Journal of Central South University of Forestry & Technology, 2017. 37 (9): 12- 19. | 
																													
																						|  | 黄洁, 姜志国, 张浩鹏, 等.  基于卷积神经网络的遥感图像舰船目标检测. 北京航空航天大学学报, 2017. 43 (9): 1841- 1848. | 
																													
																						|  | Huang J ,  Jiang Z G ,  Zhang H P , et al.  Ship object detection in remote sensing images using convolutional neural networks. Journal of Beijing University of Aeronautics and Astronautics, 2017. 43 (9): 1841- 1848. | 
																													
																						|  | 李松, 魏中浩, 张冰尘, 等.  深度卷积神经网络在迁移学习模式下的SAR目标识别. 中国科学院大学学报, 2018. 35 (1): 75- 83. | 
																													
																						|  | Li S ,  Wei Z H ,  Zhang B C , et al.  Target recognition using the transfer learning-based deep convolutional neural networks for SAR images. Journal of University of Chinese Academy of Sciences, 2018. 35 (1): 75- 83. | 
																													
																						|  | 李维刚.  森林管护措施及造林工作探析. 黑龙江科学, 2017. 8 (24): 70- 71. | 
																													
																						|  | Li W G .  Analysis of forest management and protection as well as afforestation. Heilongjiang Science, 2017. 8 (24): 70- 71. | 
																													
																						|  | 刘子豪, 祁亨年, 张广群, 等.  基于横切面微观构造图像的木材识别方法. 林业科学, 2013. 49 (11): 116- 121. | 
																													
																						|  | Liu Z H ,  Qi H N ,  Zhang G Q , et al.  Wood identification method based on microstructure images in cross-section. Scientia Silvae Sinicae, 2013. 49 (11): 116- 121. | 
																													
																						|  | 马艳丽.  基于互联网的GPS定位、跟踪、预警系统在森林管护中的应用. 东北林业大学学报, 2010. 38 (4): 132- 136. | 
																													
																						|  | Ma Y L .  Application of internet-based GPS positioning, tracking and warning system to forest management and protection. Journal of Northeast Forestry University, 2010. 38 (4): 132- 136. | 
																													
																						|  | 谢林波. 2015.基于SVM的油茶害虫图像模式分类方法研究.长沙:中南林业科技大学硕士学位论文. | 
																													
																						|  | Xie L B. 2015. Camellia pest image pattern classification method of the research based on SVM. Changsha: MS thesis of Central South University of Forestry and Technology.[in Chinese] | 
																													
																						|  | 幸泽峰, 李颖, 邓荣鑫, 等.  基于ZY-3影像的农田防护林自动提取. 林业科学, 2016. 52 (4): 11- 20. | 
																													
																						|  | Xing Z F ,  Li Y ,  Deng R X , et al.  Extracting farmland shelterbelt automatically based on ZY-3 remote sensing images. Scientia Silvae Sinicae, 2016. 52 (4): 11- 20. | 
																													
																						|  | 张罡.  大连市护林员队伍体系建设措施及建议. 现代农业科技, 2018. 2 (1): 144- 145. | 
																													
																						|  | Zhang G .  Measures and suggestions on the construction of the forest guard team in Dalian. Modern Agricultural Science and Technology, 2018. 2 (1): 144- 145. | 
																													
																						|  | 张广群, 李英杰, 汪杭军.  基于词袋模型的林业业务图像分类. 浙江农林大学学报, 2017. 34 (5): 791- 797. | 
																													
																						|  | Zhang G Q ,  Li Y J ,  Wang H J .  Classification of forestry images based on the BoW model. Journal of Zhejiang A & F University, 2017. 34 (5): 791- 797. | 
																													
																						|  | 赵燕东, 黄欢, 颜小飞, 等.  基于铱星通信技术的地面森林管护系统研究. 农业机械学报, 2016. 47 (1): 324- 330. | 
																													
																						|  | Zhao Y D ,  Huang H ,  Yan X F , et al.  Design of forest management and protection system based on Iridium communication technology. Transactions of the Chinese Society for Agricultural Machinery, 2016. 47 (1): 324- 330. | 
																													
																						|  | 周爱明, 马鹏鹏, 席天宇, 等.  基于深度学习的蝴蝶科级标本图像自动识别. 昆虫学报, 2017. 60 (11): 1339- 1348. | 
																													
																						|  | Zhou A M ,  Ma P P ,  Xi T Y , et al.  Automatic identification of butterfly specimen images at the family level based on deep learning method. Acta Entomologica Sinica, 2017. 60 (11): 1339- 1348. | 
																													
																						|  | 周飞燕, 金林鹏, 董军.  卷积神经网络研究综述. 计算机学报, 2017. 40 (6): 1229- 1251. | 
																													
																						|  | Zhou F Y ,  Jin L P ,  Dong J .  Review of convolutional neural network. Chinese Journal of Computers, 2017. 40 (6): 1229- 1251. | 
																													
																						|  | 周敏, 史振威, 丁火平.  遥感图像飞机目标分类的卷积神经网络方法. 中国图象图形学报, 2017. 22 (5): 702- 708. | 
																													
																						|  | Zhou M ,  Shi Z W ,  Ding H P .  Aircraft classification in remote sensing images using convolutional neural networks. Journal of Image and Graphics, 2017. 22 (5): 702- 708. | 
																													
																						|  | Deng J ,  Dong W ,  Socher R , et al.  ImageNet:a large-scale hierarchical image database. Computer Vision and Pattern Recognition(CVPR), 2009. 248- 255. | 
																													
																						|  | Jia Y, Shelhamer E, Donahue J, et al. 2014.Caffe: convolutional architecture for fast feature embedding. Proceedings of the ACM International Conference on Multimedia, MM'14, Orlando, FL, USA, 675-678. | 
																													
																						|  | Krizhevsky A, Sutskever I, Hinton G. 2012. Imagenet classification with deep convolutional neural networks. Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, USA, 1097-1105. | 
																													
																						|  | LeCun Y ,  Bengio Y ,  Hinton G .  Deep learning. Nature, 2015. 521, 436- 444. doi: 10.1038/nature14539
 | 
																													
																						|  | Patel V .  Kalman-based stochastic gradient method with stop condition and insensitivity to conditioning. SIAM Journal on Optimization, 2016. 26 (4): 2620- 2648. doi: 10.1137/15M1048239
 | 
																													
																						|  | Szegedy C, Liu W, Jia Y Q, et al. 2015. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 1-9. | 
																													
																						|  | Zhang Q C ,  Yang L T ,  Chen Z K , et al.  A survey on deep learning for big data. Information Fusion, 2018. 42, 146- 157. doi: 10.1016/j.inffus.2017.10.006
 |