|  | 白雪冰, 王克奇, 王辉, 等.  基于灰度共生矩阵的木材纹理分类方法的研究. 哈尔滨工业大学学报, 2005, 37 (12): 1667- 1670. doi: 10.3321/j.issn:0367-6234.2005.12.022
 | 
																													
																						|  | Bai X B ,  Wang K Q ,  Wang H , et al.  Research on the classification of wood texture based on gray level co-occurrence matrix. Journal of Harbin Institute of Technology, 2013, 37 (12): 1667- 1670. | 
																													
																						|  | 白雪冰, 王克奇, 王业琴, 等.  基于BP神经网络的木材表面颜色特征分类的研究. 森林工程, 2007, 23 (1): 24- 26. doi: 10.3969/j.issn.1001-005X.2007.01.007
 | 
																													
																						|  | Bai X B ,  Wang K Q ,  Wang Y Q , et al.  Research of the feature classification of wood surface colors based on neural network. Forest Engineering, 2007, 23 (1): 24- 26. doi: 10.3969/j.issn.1001-005X.2007.01.007
 | 
																													
																						|  | 戴维. 2012. 基于纹理统计方法的木材类型识别研究. 长沙: 湖南大学. | 
																													
																						|  | Dai W. 2012. The research of wood recognition based on statistical method of grain. Changsha: Hunan University. [in Chinese] | 
																													
																						|  | 郭德军, 宋蛰存.  基于灰度共生矩阵的纹理图像分类研究. 林业机械与木工设备, 2005, 33 (7): 21- 23. doi: 10.3969/j.issn.2095-2953.2005.07.008
 | 
																													
																						|  | Guo D J ,  Song Z C .  A study on texture images classifying based on gray-level co-occurrence matrix. Forestry Machinery & Woodworking Equipment, 2005, 33 (7): 21- 23. doi: 10.3969/j.issn.2095-2953.2005.07.008
 | 
																													
																						|  | 罗微. 2019. 基于图像多特征模式识别的木材分类分选算法研究. 哈尔滨: 东北林业大学. | 
																													
																						|  | Luo W. 2019. Research on wood classification and sorting algorithms based on image muti-feature pattern recognition. Harbin: Northeast Forestry University. [in Chinese] | 
																													
																						|  | 马琳. 2013. 基于特征融合的木材纹理分类研究. 哈尔滨: 东北林业大学. | 
																													
																						|  | Ma L. 2013. Research on classification of wood texture based on feature fusion. Harbin: Northeast Forestry University. [in Chinese] | 
																													
																						|  | 王晗. 2008. 木材表面纹理模式识别方法的研究. 哈尔滨: 东北林业大学. | 
																													
																						|  | Wang H. 2008. The research of pattern recognition method on wood surfacer texture. Harbin: Northeast Forestry University. [in Chinese] | 
																													
																						|  | 汪杭军. 2013. 基于纹理的木材图像识别方法研究. 合肥: 中国科学技术大学. | 
																													
																						|  | Wang H J. 2013. The study of recognition methods of texture-based wood images. Hefei: University of Science and Technology of China. [in Chinese] | 
																													
																						|  | 尹江苹, 蒋劲东, 高瑞清, 等.  CITES公约木材树种管制及我国进口濒危木材贸易现状. 木材工业, 2019, 33 (1): 25- 28, 37. | 
																													
																						|  | Yin J P ,  Jiang J D ,  Gao R Q , et al.  Current status of CITES listed timber species and relevant imports to China. China Wood Industry, 2019, 33 (1): 25- 28, 37. | 
																													
																						|  | 于海鹏, 刘一星, 刘镇波, 等.  基于图像纹理特征的木材树种识别. 林业科学, 2007, 43 (4): 77- 81. | 
																													
																						|  | Yu H P ,  Liu Y X ,  Liu Z B , et al.  Wood species retrieval on base of image textural features. Scientia Silvae Sinicae, 43 (4): 77- 81. | 
																													
																						|  | 张怡卓, 马琳, 王铁滨, 等.  小波变换的木材纹理在线分选. 林业科技, 2012, 37 (6): 21- 24. | 
																													
																						|  | Zhang Y Z ,  Ma L ,  Wang T B , et al.  Wavelet transform of wood texture online classification. Forestry Science & Technology, 2012, 37 (6): 21- 24. | 
																													
																						|  | He K ,  Zhang X ,  Ren S , et al.  Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 770- 778. | 
																													
																						|  | Howard A ,  Sandler M ,  Chu G , et al.  Searching for MobileNetv3. Proceedings of the IEEE International Conference on Computer Vision, 2019, 1314- 1324. | 
																													
																						|  | Huang G ,  Liu Z ,  Van Der Maaten L , et al.  Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 4700- 4708. | 
																													
																						|  | Kwok N M ,  Wang D ,  Jia X , et al.  Gray world based color correction and intensity preservation for image enhancement. Proceedings-4th International Congress on Image and Signal Processing, 2011, 2, 994- 998. | 
																													
																						|  | Kwon O ,  Lee H G ,  Lee M R , et al.  Automatic wood species identification of Korean softwood based on convolutional neural networks. Journal of the Korean Wood Science and Technology, 2017, 45 (6): 797- 808. | 
																													
																						|  | Lew Y L. 2005. Design of an intelligent wood recognition system for the classification of tropical wood species. Johor Bahru: University Teknologi Malaysia. [in Malaysia] | 
																													
																						|  | Nurthohari Z ,  Murti M A ,  Setianingsih C , et al.  Wood quality classification based on texture and fiber pattern recognition using HOG feature and SVM classifier. 2019 IEEE International Conference on Internet of Things and Intelligence System(IoTaIS), 2019, 123- 128. | 
																													
																						|  | Oktaria A S ,  Prakasa E ,  Suhartono E , et al.  Wood species identification using convolutional neural network(CNN)architectures on macroscopic images. Journal of Information Technology and Computer Science, 2019, 4 (3): 274- 283. doi: 10.25126/jitecs.201943155
 | 
																													
																						|  | Pak M ,  Kim S .  A review of deep learning in image recognition. 2017 4th international conference on computer applications and information processing technology(CAIPT), IEEE, 2017, 1- 3. | 
																													
																						|  | Pan S J ,  Yang Q .  A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359. | 
																													
																						|  | Pramunendar R A ,  Supriyanto C ,  Novianto D H , et al.  A classification method of coconut wood quality based on gray level co-occurrence matrices. 2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems, IEEE, 2013, 254- 257. | 
																													
																						|  | Ravindran P ,  Costa A ,  Soares R , et al.  Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods, 2018, 14, 25. doi: 10.1186/s13007-018-0292-9
 | 
																													
																						|  | Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv: 1409. 1556[cs. cv]. https://arxiv.org/abs/1409/1556. | 
																													
																						|  | Sugiarto B ,  Prakasa E ,  Wardoyo R , et al.  Wood identification based on histogram of oriented gradient(HOG) feature and support vector machine(SVM) classifier. 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering(ICITISEE), IEEE, 2017, 337- 341. | 
																													
																						|  | Szegedy C ,  Liu W ,  Jia Y , et al.  Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 1- 9. | 
																													
																						|  | Tou J Y ,  Lau P Y ,  Tay Y H , et al.  Computer vision-based wood recognition system. Proceedings of International Workshop on Advanced Image Technology, 2006, 26 (5): 1098- 1101. | 
																													
																						|  | Tou J Y ,  Tay Y H ,  Lau P Y , et al.  A comparative study for texture classification techniques on wood species recognition problem. 2009 Fifth International Conference on Natural Computation, IEEE, 2009a, 5, 8- 12. | 
																													
																						|  | Tou J Y ,  Tay Y H ,  Lau P Y ,  2009b .  Rotational invariant wood species recognition through wood species verification.Proceedings. 2009 1st Asian Conference on Intelligent Information and Database Systems, 2009b, 115- 120. | 
																													
																						|  | Wang B ,  Wang H ,  Qi H , et al.  Wood recognition based on grey-level co-occurrence matrix. 2010 International Conference on Computer Application and System Modeling, IEEE, 2010, 269- 272. |