林业科学 ›› 2021, Vol. 57 ›› Issue (9): 21-33.doi: 10.11707/j.1001-7488.20210903
薛海连1,田相林2,曹田健3,*
收稿日期:
2020-01-19
出版日期:
2021-09-25
发布日期:
2021-11-29
通讯作者:
曹田健
基金资助:
Hailian Xue1,Xianglin Tian2,Tianjian Cao3,*
Received:
2020-01-19
Online:
2021-09-25
Published:
2021-11-29
Contact:
Tianjian Cao
摘要:
目的: 以基于碳平衡的过程模型CROBAS为例,提出一种结合经验模型与过程模型的混合建模方法,优化华山松过程模型CROBAS-PA的参数,探索在建模数据不足情况下预估复杂过程模型参数的有效途径。方法: 参数优化模型的目标函数设为过程模型CROBAS-PA与经验模型QUASSI 1.0在树高和生物量预测上的离差,优化模型的决策变量选取过程模型中10个随气候和树种调整的参数(树冠树叶分形维数、消光系数、比叶面积、最大光合速率、树叶衰老率、叶表面积密度、自然整枝参数、树枝边材率、树干边材衰老率和树枝边材衰老率),约束条件为过程模型参数的可行域。选用差分演化算法,采用Sobol一阶灵敏度和全局灵敏度系数进行参数敏感性分析与评估,利用平均误差(ME)、平均绝对误差(MAE)和平均相对误差(MRE)进行模型检验。结果: 经参数优化后的华山松过程模型CROBAS-PA的有效预测时间可达20年,树高和胸径预测值平均绝对误差分别小于1.03 m和1.19 cm,平均相对误差分别低于5.59%和2.59%。灵敏度分析显示,最大光合速率、比叶面积、消光系数、树冠树叶分形维数对树高和胸径的生长变化有明显影响,而叶表面积密度对胸径和树高的生长变化影响较小。结论: 经参数优化后的华山松过程模型CROBAS-PA可以较准确预测华山松的树高和胸径生长以及林木各器官中的碳分配,基于经验-过程混合建模方法在复杂过程模型参数预估中具有一定应用潜力。
中图分类号:
薛海连,田相林,曹田健. 利用经验-过程混合建模方法优化华山松过程模型的参数[J]. 林业科学, 2021, 57(9): 21-33.
Hailian Xue,Xianglin Tian,Tianjian Cao. Optimizing Parameters of a Process-Based Model for Pinus armandii: A Compromise between Empirical and Process-Based Modelling Approaches[J]. Scientia Silvae Sinicae, 2021, 57(9): 21-33.
表1
华山松样地概况"
调查年份 Inventory year | 样地类型 Plot type | 样地数量 Number of plots | 林龄 Stand age/a | 林分密度 Stand density/hm-2 | 平均胸径 Mean DBH/cm | 平均树高 Mean tree height/m | 林分断面积 Stand basal area/(m2·hm-2) |
1990 | 临时样地Temporary plots | 244 | 20~60 | 113~2 324 | 10.0~32.0 | 6.5~22.0 | 5.0~33.0 |
2005 | 临时样地Temporary plots | 143 | 16~67 | 92~2 190 | 7.6~33.8 | 5.3~22.5 | 5.0~37.0 |
2013 | 临时样地Temporary plots | 70 | 20~81 | 181~2 254 | 11.2~29.6 | 6.0~19.0 | 7.0~30.0 |
2014 | 固定样地Permanent plots | 31 | 20~52 | 289~4 616 | 6.2~22.9 | 6.7~16.0 | 6.9~28.6 |
表2
华山松经验模型QUASSI 1.0参数估计值"
公式 Equation | 因变量 Dependent variable | 样本量 Sample size | 拟合参数 Parameter estimate | 决定系数 Determination coefficient (R2) |
(1) | H | 387 | a1=24.994;a2=42.728;a3=1.032 | 0.382 |
(2) | SDI | 85 | β=1.662 | 0.811 |
(3) | G | 387 | b1=16.132;b2=0.233;b3=6.572;b4=1.475 | 0.781 |
(4) | D | 387 | c1=22.717;c2=0.182;c3=24.893;c4=0.182 | 0.482 |
表3
华山松过程模型CROBAS-PA参数估计值"
参数 Parameter | 生理学意义 Meaning of biology | 参数值Parameter values | 参数化方法 Method of parameterization |
φs | 冠基树干边材率 Form factor of sapwood in stem below crown | 1.0 | 基于PIPE理论假设的理论值Theoretical value based on the assumption of pipe theory |
Ψs | 冠基树干边材衰老率 Form factor of senescent sapwood in stem below crown | 1.0 | 基于PIPE理论假设的理论值Theoretical value according to pipe theory |
φc | 冠层树干边材率 Form factor of sapwood in stem within crown | 0.75 | 基于椎体形式理论值Based on the conical form |
φ′t | 运输根边材率(粗根没有心材) Form factor of sapwood in transport roots (no heartwood in coarse roots) | 1.0 | |
ρs | 树干部分木材密度 Density of wood in stem | 400 kg·m-3 | |
ρb | 树枝部分木材密度 Density of wood in branch | 400 kg·m-3 | |
ρt | 运输根部分木材密度 Density of wood in transport roots | 400 kg·m-3 | |
ct | 运输根长/干长 Ratio of transport root length to stem length | 1.0 | |
αs | 树干边材面积/叶生物量 Ratio of sapwood area in stem to foliage weight | 1.2×10-3 m2·kg-1 | |
αb | 树枝边材面积/叶生物量 Ratio of sapwood area in branches to foliage weight | 5×10-3 m2·kg-1 | |
αt | 运输根边材面积/叶生物量 Ratio of sapwood area in transport roots to foliage weight | 4.0×10-4 m2·kg-1 | |
r1 | 树叶细根呼吸率 Specific maintenance respiration rate of foliage + fine roots | 0.1 kg C·kg-1DW a-1 | |
r2 | 木质部呼吸率 Specific maintenance respiration rate of wood | 0.01kg C·kg-1DW a-1 | |
sr | 细根衰老速率 Specific senescence rate of fine roots | 1.0 a-1 | |
ds0 | 树干部分整枝边材面积转化率 Specific sapwood area turnover rate per unit relative pruning in stem | 1.0 | |
db0 | 树枝部分整枝边材面积转化率 Specific sapwood area turnover rate per unit relative pruning in branch | 1.0 | |
dt0 | 传输根部分整枝边材面积转化率 Specific sapwood area turnover rate per unit relative pruning in transport root | 1.0 | |
ds1 | 树干部分无整枝边材面积转化率 Specific turnover rate of sapwood area in case of no pruning in stem | 0.01 | |
db1 | 树枝部分无整枝边材面积转化率 Specific turnover rate of sapwood area in case of no pruning in branch | 0.01 | |
dt1 | 传输根无整枝边材面积转化率 Specific turnover rate of sapwood area in case of no pruning in transport root | 0.01 | |
Ψ′t | 运输根边材衰老率(运输根无心材) Form factor of senescence sapwood in transport roots(no heartwood in coarse roots) | 0 | |
αr | 细根/叶生物量 Ratio of fine root to foliage weight | 0.2 | |
aσ | 单位冠长对应光合作用下降率 Decrease of photosynthesis per unit crown length | 0.02 m-1 | |
cb | 树冠半径/冠长 Ratio of crown radius to crown length | 0.3 | 本研究This study |
q | 冠幅自然整枝度 Degree of control by crown coverage of self-pruning | 0.35 | 预估值Estimate value |
Y | 碳有效利用率 Carbon use efficiency | 0.65 kg C·kg-1 DW | |
sf | 树叶衰老率(针叶生命周期3~5 a) Specific senescence rate of foliage(based on needle lifetime of 3-5 a) | 0.193 6 [0.2, 0.333] a-1 | 本研究This study |
An | 比叶面积 Specific leaf area | 5.219 1 [4.765 1, 6.543] m2·kg-1 | |
P | 最大光合速率 Maximum rate of canopy photosynthesis per unit area | 3.498 3 [1.0, 5.074 5] kgC·m-2a-1 | |
k | 消光系数 Extinction coefficient | 0.117 4 [0.01, 0.18] | |
aq | 自然整枝参数 Parameter related to self-pruning | 0.461 4 [0.45, 0.8] | 本研究This study |
φ′b | 树枝边材率 Form factor of sapwood in branches | 2.0 [0.1, 2.0] | 本研究This study |
z | 冠层树叶分形维数 Fractal dimension of foliage in crown | 3.0 [2.0, 3.0] | |
x | 叶表面积密度 Surface area density of foliage | 0.198 7 [0.03, 0.2] kg·m-z | |
Ψc | 树干边材衰老率 Form factor of senescence sapwood in steminside crown | 0.945 5 [0.5, 1.0] | 本研究This study |
Ψ′b | 树枝边材衰老率 Form factor of senescence sapwood in branches | 3.0 [0.9, 3.0] | 本研究This study |
表5
树高和胸径的一阶灵敏度系数和总灵敏度系数"
参数Parameter | 树高Tree height | DBH | |||
一阶灵敏度系数 The first order sensitivity index | 总灵敏度系数 The total sensitivity index | 一阶灵敏度系数 The first order sensitivity index | 总灵敏度系数 The total sensitivity indiex | ||
树叶衰老率Specific senescence rate of foliage(sf) | 0.020 4 | 0.002 4 | 0.030 5 | 0.003 4 | |
比叶面积Specific leaf area(An) | 0.077 9 | 0.301 0 | 0.052 2 | 0.343 3 | |
最大光合速率Maximum rate of canopy photosynthesis per unit area(P) | 0.153 0 | 0.444 3 | 0.099 0 | 0.500 3 | |
消光系数Extinction coefficient(k) | 0.079 2 | 0.312 9 | 0.073 0 | 0.359 6 | |
自然整枝参数Parameter related to self-pruning(aq) | 0.029 6 | 0.033 3 | 0.034 0 | 0.025 0 | |
树枝边材率Form factor of sapwood in branches(φb) | 0.020 0 | 0.000 2 | 0.038 4 | 0.048 8 | |
冠层树叶分形维数Fractal dimension of foliage in crown(z) | 0.128 4 | 0.3610 | 0.110 5 | 0.402 6 | |
叶表面积密度Surface area density of foliage(x) | 0.029 1 | 0.033 8 | 0.033 6 | 0.028 0 | |
树干边材衰老率Form factor of senescence sapwood in steminside crown(Ψc) | 0.020 8 | 0.004 0 | 0.031 2 | 0.000 0 | |
树枝边材衰老率Form factor of senescence sapwood in branches(Ψ′b) | 0.041 1 | 0.067 0 | 0.031 2 | 0.000 1 | |
细根/叶生物量Fine root: foliage weight ratio(αr) | 0.023 8 | 0.026 0 | 0.023 0 | 0.038 6 | |
细根衰老速率Specific senescence rate of fine roots(sr) | 0.023 3 | 0.022 2 | 0.031 9 | 0.033 1 |
陈存根, 彭鸿. 秦岭火地塘林区主要森林类型的现存量和生产力. 西北林学院学报, 1996, 11 (Suppl.): 92- 102. | |
Chen C G , Peng H . Standing crops and productivity of the major forest-types at the Houditang forest region of the Qinling Mountains. Journal of Northwest Forestry College, 1996, 11 (Suppl.): 92- 102. | |
陈存根, 彭鸿. 华山松林木的生长与分化. 西北林学院学报, 1994, 9 (2): 1- 8. | |
Chen C G , Peng H . Growth and differentiation of armandii Pine trees. Journal of Northwest Forestry College, 1994, 9 (2): 1- 8. | |
何丽鸿, 王海燕, 雷相东. 基于BIOME-BGC模型的长白落叶松林净初级生产力模拟参数敏感性. 应用生态学报, 2016, 27 (2): 412- 420. | |
He L H , Wang H Y , Lei X D . Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model. Chinese Journal of Applied Ecology, 2016, 27 (2): 412- 420. | |
李悦黎, 杜纪山. 火地塘教学实验林场森林资源的数据分析及经营对策. 西北林学院学报, 1993, 8 (3): 53- 58. | |
Li Y L , Du J S . Analysis and management strategy of forest resources of Huoditang teaching and experimental forest farm. Journal of Northwest Forestry College, 1993, 8 (3): 53- 58. | |
梁保松, 朱景乐, 王军辉, 等. Pilodyn在华山松活立木木材材性估测中的应用. 南京林业大学学报: 自然科学版, 2008, 32 (6): 97- 101.
doi: 10.3969/j.issn.1000-2006.2008.06.022 |
|
Liang B S , Zhu J L , Wang J H , et al. The application of the Pilodyn toassess wood traits of living trees in Pinus armandi. Journal of Nanjing Forestry University: Natural Sciences Edition, 2008, 32 (6): 97- 101.
doi: 10.3969/j.issn.1000-2006.2008.06.022 |
|
梁军生, 陈晓鸣, 杨子祥, 等. 云南松与华山松人工混交林针叶光合速率对光及CO2浓度的响应特征. 林业科学研究, 2009, 22 (1): 22- 25. | |
Liang J S , Chen X M , Yang Z X , et al. Photosynthesis rate in response to light intensity and CO2 concentration in the mixed plantation of Pinus yunnanensis and Pinus armandii. Forest Research, 2009, 22 (1): 22- 25. | |
刘华, 侯琳, 雷德瑞. 秦岭火地塘林区油松和华山松林的空间分布格局及碳储量与碳密度研究. 中国生态农业学报, 2007, 15 (1): 5- 8. | |
Liu H , Hou L , Lei D R . Carbon storage and carbon density of Pinus tabulaeformis and Pinus armandii forests at Huoditang forest region in Qinling Mountain. Chinese Journal of Eco-Agriculture, 2007, 15 (1): 5- 8. | |
盛万兴, 刘科研, 孟晓丽. 进化算法及其在智能电网中的应用. 北京: 科学出版社, 2017. | |
Sheng W X , Liu K Y , Meng X L . Evolutionary algorithms and their applicaton in smart grid. Beijing: Science Press, 2017. | |
时忠杰, 王彦辉, 徐丽宏, 等. 六盘山华山松(Pinus armandii)林降雨再分配及其空间变异特征. 生态学报, 2009, 29 (1): 76- 85.
doi: 10.3321/j.issn:1000-0933.2009.01.010 |
|
Shi Z J , Wang Y H , Xu L H , et al. Rainfall redistribution and its spatial variation in the stand of Pinus armandii in the Liupan Mountains, China. Acta Ecologica Sinica, 2009, 29 (1): 76- 85.
doi: 10.3321/j.issn:1000-0933.2009.01.010 |
|
宋子炜, 郭小平, 赵廷宁, 等. 北京山区油松林光辐射特征及冠层结构参数. 浙江林学院报, 2009, 26 (1): 38- 43. | |
Song Z H , Guo X P , Zhao T N , et al. Light environment and canopy structure of a Pinus tabulaeformis community in the mountainous area of Beijing. Journal of Zhejiang Forestry College, 2009, 26 (1): 38- 43. | |
吴恒, 党坤良, 田相林, 等. 秦岭林区天然次生林与人工林立地质量评价. 林业科学, 2015, 51 (4): 78- 88. | |
Wu H , Dang K L , Tian X L , et al. Evaluating site quality for secondary forests and plantation in Qinling Mountains. Science Silvae Sinicae, 2015, 51 (4): 78- 88. | |
曾慧卿, 刘琪璟, 冯宗炜, 等. 基于BIOME-BGC模型的红壤丘陵区湿地松(Pinus elliottii)人工林GPP和NPP. 生态学报, 2008, 28 (11): 5314- 5321.
doi: 10.3321/j.issn:1000-0933.2008.11.013 |
|
Zeng H Q , Liu Q J , Feng Z W , et al. GPP and NPP study of Pinus elliottii forest in red soil hilly region based on BIOME-BGC model. Acta Ecologica Sinica, 2008, 28 (11): 5314- 5321.
doi: 10.3321/j.issn:1000-0933.2008.11.013 |
|
张小全. 森林细根生产和周转研究. 林业科学, 2001, 37 (3): 126- 138.
doi: 10.3321/j.issn:1001-7488.2001.03.021 |
|
Zhang X Q . Fine-root production and turnover for forest ecosystems. Scientia Silvae Sinicae, 2001, 37 (3): 126- 138.
doi: 10.3321/j.issn:1001-7488.2001.03.021 |
|
张廷龙, 孙睿, 胡波, 等. 利用模拟退火算法优化Biome-BGC模型参数. 生态学杂志, 2011, 30 (2): 408- 414. | |
Zhang T L , Sun R , Hu B , et al. Using simulated annealing algorithm to optimize the parameters of Biome-BGC model. Chinese Journal of Ecology, 2011, 30 (2): 408- 414. | |
Arias-Rodil M , Pukkala T , González-González J M , et al. Use of depth-first search and direct search methods to optimize even-aged stand management: a case study involving maritime pine in Asturias(northwest Spain). Canadian Journal of Forest Research, 2015, 45 (10): 1269- 1279.
doi: 10.1139/cjfr-2015-0044 |
|
Battaglia M , Sands P , White D , et al. CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. Forest Ecology and Management, 2004, 193 (1/2): 251- 282. | |
Cukier R I , Schaibly J H , Shuler K E . Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients Ⅲ. Analysis of the approximations. Journal of Chemical Physics, 1975, 63 (3): 1140- 1149. | |
Ewen. 2013. Evaluation and calibration of the CroBas-PipeQual model for Jack Pine(Pinus banksiana Lamb. ) using Bayesian modeling hybridization of a process-based forest growth model with empirical yield curves. Québec: MS thesis of Université Leval. | |
Gonzalez-Benecke C A , Jokes E J , Cropper Jr W P , et al. Parameterization of the 3-PG model for pine elloiottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure. Forest Ecology and Management, 2014, 327, 55- 75.
doi: 10.1016/j.foreco.2014.04.030 |
|
Hartig F , Dyke J , Hickler T , et al. Connecting dynamic vegetation models to data - an inverse perspective: dynamic vegetation models-an inverse perspective. Journal of Biogeograph, 2012, 39 (12): 2240- 2252.
doi: 10.1111/j.1365-2699.2012.02745.x |
|
Hornberger G M , Cosby B J . Selection of parameter values in environmental models using sparse data: a case study. Applied Mathematics and Computation, 1985, 17 (4): 335- 355.
doi: 10.1016/0096-3003(85)90040-2 |
|
Kimmins J K . Forest ecology. New York: Maemillan Press, 2004. | |
Korol R L , Running S W , Milner K S . Incorporating inter tree competition into an ecosystem model. Canadian Journal of Forest Research, 1995, 25 (3): 413- 424.
doi: 10.1139/x95-046 |
|
Landsberg J J , Waring R H . A generalized model of forest productivity using simplied concepts of radiation-used efficient, carbon balance and partitioning. Forest Ecology and Management, 1997, 95 (3): 209- 228.
doi: 10.1016/S0378-1127(97)00026-1 |
|
Liu H , Cai Z , Wang Y . Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 2010, 10 (2): 629- 640.
doi: 10.1016/j.asoc.2009.08.031 |
|
López Cruz I L , van Willigenburg L G , van Straten G . Optimal control of nitrate in lettuce by a hybrid approach: differential evolution and adjustable control weight gradient algorithms. Computers and Electronics in Agriculture, 2003, 40 (1): 179- 197. | |
Mäkelä A . A carbon balance model of growth and self-pruning in trees based on structural relationships. Forest Science, 1997, 43 (1): 7- 24. | |
Mäkelä A . Performance analysis of a process-based stand growth model using Monte Carlo techniques. Scandinavian Journal of Forest Research, 1988, 3 (1/4): 315- 331. | |
Mäkelä A , Landsberg J , Alan R E K , et al. Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiology, 2000, 20 (5/6): 289- 298. | |
Mäkelä A , Pulkkinen M , Mäkinen A . Bridging empirical and carbon-balance based forest site productivity - Significance of below-ground allocation. Forest Ecology and Management, 2016, 372, 64- 77.
doi: 10.1016/j.foreco.2016.03.059 |
|
McDill M E , Amateis R L . Measuring forest site quality using the parameters of a dimensionally compatible height growth function. Forest Science, 1992, 38 (2): 409- 429. | |
Minunno F , Peltoniemi M , Harkonen S , et al. Bayesian calculation of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory. Forest Ecology and Management, 2019, 440, 208- 257.
doi: 10.1016/j.foreco.2019.02.041 |
|
Mohren M J. 1987. Simulation of forest growth applied to Douglas fir stands in the Netherlands. Wageningen: PhD thesis of Wageningen University & Research. | |
Nash J E , Sutcliffe J V . River flow forecasting through conceptual models part I-a discussion of principles. Journal of Hydrology, 1970, 10 (3): 282- 290.
doi: 10.1016/0022-1694(70)90255-6 |
|
Nossent J , Elsen P , Bauwens W . Sobol' sensitivity of a complex environmental model. Environmental Modelling and Software, 2011, 26 (4): 1515- 1525. | |
Onwubolu G , Davendra D . Scheduling flow shops using differential evolution algorithm. European Journal of Operational Research, 2006, 171 (2): 674- 692.
doi: 10.1016/j.ejor.2004.08.043 |
|
Persson H . Death and replacement of fine roots in a mature Scots pine stand. In struction and function of northern coniferous forest-an ecosystem study. The Ecology Bulletin(Stockholm), 1980, 32, 251- 261. | |
Pukkala T . Population-based methods in the optimization of stand management. Silva Fennica, 2009, 43 (2): 261- 274. | |
Reineke P J . Perfecting a stand-density for even-aged forests. Agricultral Reseach, 1933, 46 (7): 627- 638. | |
Schumacher F X . A new growth curve and its applicability to timber yield studies. Journal of Forestry Research, 1939, 37 (10): 819- 820. | |
Shcherbinina A. 2012. Validation of the Jack pine version of CROBAS-PIPEQUAL. Vancouver: PhD thesis of The University of British Columbia. | |
Shinozaki K , Yoda K , Hozumi K , et al. A quantitative analysis of plant form-the pipe model theory: I. basic analyses. Japanese Journal of Ecology, 1964, 14 (3): 97- 105. | |
Sievänen R , Burk T E . Adjusting a process-based growth for varying site conditions through parameter estimation. Canadian Journal of Forest Research, 1993, 23 (9): 1837- 1851.
doi: 10.1139/x93-234 |
|
Sivia D S , Skilling J . Data analysis: a bayesian tutorial. New York: Oxford University Press, 2006. | |
Storn R , Price K . Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359.
doi: 10.1023/A:1008202821328 |
|
Vanclay J K , Skovsgaard J P . Evaluating forest growth models. Ecology Modeling, 1997, 98 (1): 1- 12.
doi: 10.1016/S0304-3800(96)01932-1 |
|
Vanninen P , Mäkelä A . Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiology, 1999, 19 (12): 823- 830.
doi: 10.1093/treephys/19.12.823 |
|
Vanninen P , Ylitalo H , Sievänen R , et al. Effects of age and site quality on the distribution of biomass in Scots pine(Pinus sylvestris L.). Trees, 1996, 10 (4): 231- 238. | |
van Oijen M , Rougier J , Smith R . Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiology, 2005, 25 (7): 915- 927.
doi: 10.1093/treephys/25.7.915 |
|
Weiskittel A R , Han D W , Kershaw Jr J A , et al. Forest growth and yield modeling. Chichester: John Wiley & Son, Ltd, 2011. | |
Xie Y , Wang H , Lei X . Application of the 3-PG model to predict growth of Larix olgensis plantations in northeastern China. Forest Ecology and Management, 2017, 406, 208- 218.
doi: 10.1016/j.foreco.2017.10.018 |
|
Yang J . Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environmental Modelling and Software, 2011, 26 (4): 444- 457.
doi: 10.1016/j.envsoft.2010.10.007 |
|
Yoder B J , Ryan M G , Waring R H , et al. Evidence of reduced photosynthetic rates in old trees. Forest Science, 1994, 40 (3): 513- 527. | |
Zeide B , Pfeifer P . A method for estimation of fractal dimension of tree crowns. Forest Science, 1991, 37 (5): 1253- 1265. |
[1] | 张维伟,赵忠,刘金良,邓平. 桥山林区3种麻栎群落类型的种群动态与幼苗特征[J]. 林业科学, 2021, 57(7): 1-10. |
[2] | 康晓彤,陈辉. 华山松alpha-pinene synthase基因和(-)-limonene synthase基因的克隆及表达[J]. 林业科学, 2021, 57(6): 180-188. |
[3] | 夏晓运,庞勇,黄庆丰,吴荣,陈东升,白羽. 基于3-PG模型的长白落叶松生物量生长预测[J]. 林业科学, 2021, 57(3): 67-78. |
[4] | 李锦隆,王满堂,李涵诗,陈晓萍,孙俊,钟全林,程栋梁. 冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响[J]. 林业科学, 2021, 57(2): 62-71. |
[5] | 刘秀红,姜春前,徐睿,何潇,齐梦娟. 相容性单木生物量模型估计方法的比较——以青冈栎为例[J]. 林业科学, 2020, 56(9): 164-173. |
[6] | 魏晶昱,范文义,于颖,毛学刚. GF-3全极化SAR数据极化分解估算人工林冠层生物量[J]. 林业科学, 2020, 56(9): 174-183. |
[7] | 荣俊冬,凡莉莉,陈礼光,张迎辉,何天友,陈凌艳,宋鲲鹏,郑郁善. 不同施氮模式和施氮量对福建柏幼苗生物量分配和根系生长的影响[J]. 林业科学, 2020, 56(7): 175-184. |
[8] | 竹万宽,许宇星,王志超,杜阿朋. 中国桉树人工林生物量估算系数及影响要素[J]. 林业科学, 2020, 56(5): 1-11. |
[9] | 董利虎,刘永帅,宋博,周翼飞,李凤日. 立木含碳量估算方法比较[J]. 林业科学, 2020, 56(4): 46-54. |
[10] | 武金翠,周军,张宇,余晓燕,石雷,漆良华. 毛竹林固碳增汇价值的动态变化:以福建省为例[J]. 林业科学, 2020, 56(4): 181-187. |
[11] | 周律,欧光龙,王俊峰,胥辉. 基于空间回归模型的思茅松林生物量遥感估测及光饱和点确定[J]. 林业科学, 2020, 56(3): 38-47. |
[12] | 邓磊,朱春云,于世川,祁银燕,张文辉,杜盛,关晋宏. 祁连山青海云杉中龄林混交度对细根形态特征的影响[J]. 林业科学, 2020, 56(1): 191-200. |
[13] | 刘春洋, 史田, 史国安, 杨林菲, 范学峰, 高双成, 张改娜. 不同移栽时期对‘凤丹’牡丹植株生长效应及其综合评价[J]. 林业科学, 2019, 55(8): 54-62. |
[14] | 薛春泉, 徐期瑚, 林丽平, 何潇, 曹磊, 李海奎. 基于异速生长和理论生长方程的广东省木荷生物量动态预测[J]. 林业科学, 2019, 55(7): 86-94. |
[15] | 丁令智, 满秀玲, 肖瑞晗, 蔡体久. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化[J]. 林业科学, 2019, 55(7): 178-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||