 
		林业科学 ›› 2021, Vol. 57 ›› Issue (3): 67-78.doi: 10.11707/j.1001-7488.20210307
夏晓运1,2,庞勇2,3,*,黄庆丰1,吴荣4,陈东升5,白羽2,3
收稿日期:2019-03-01
									
				
									
				
									
				
											出版日期:2021-03-25
									
				
											发布日期:2021-04-07
									
			通讯作者:
					庞勇
												基金资助:Xiaoyun Xia1,2,Yong Pang2,3,*,Qingfeng Huang1,Rong Wu4,Dongsheng Chen5,Yu Bai2,3
Received:2019-03-01
									
				
									
				
									
				
											Online:2021-03-25
									
				
											Published:2021-04-07
									
			Contact:
					Yong Pang   
												摘要:
目的: 基于3-PG模型预测长白落叶松生物量生长变化,为长白落叶松林分生长规律研究提供依据。方法: 以5块长白落叶松密度试验林连续28年监测数据和24块长白落叶松固定样地3期调查数据为基础,结合各组分(叶、干和根)生物量计算公式,获得每块样地不同调查时间的密度、胸径、蓄积和各组分生物量。根据密度试验林数据校正模型生理参数,结合立地参数和气象参数,通过参数率定、迭代拟合与敏感性分析方法确定长白落叶松3-PG模型的生理参数。采用决定系数(R2)、平均误差(ME)、平均绝对误差(MAE)、平均相对误差(MRE)和均方根误差(RMSE)评价模型预测能力。选取冠层量子效率(alpha)和初级生物量分配到根的最小值(pRn)进行敏感性分析,并预测肥力等级(FR)为0.2、0.4和0.6时长白落叶松生物量生长变化趋势。结果: 1)3-PG模型预测值与实测值之间R2在0.77以上;除叶干生物量比为25.6%外,其他各指标的MRE绝对值均在10.97%以内,预测结果较可靠;2)alpha和pRn具有较高敏感性,是模型的关键参数;3)模型预测不同FR下的长白落叶松生物量变化符合树木生长机理过程,且各组分生物量随FR增加而增加。结论: 基于地面数据的参数率定后,3-PG模型能够很好模拟长白落叶松生物量生长变化,可作为一种有效的森林经营预测工具。对于长白落叶松3-PG模型,冠层量子效率(alpha)和初级生物量分配到根的最小值(pRn)是影响预测结果的关键参数。
中图分类号:
夏晓运,庞勇,黄庆丰,吴荣,陈东升,白羽. 基于3-PG模型的长白落叶松生物量生长预测[J]. 林业科学, 2021, 57(3): 67-78.
Xiaoyun Xia,Yong Pang,Qingfeng Huang,Rong Wu,Dongsheng Chen,Yu Bai. Prediction of Biomass Growth of Larix olgensis Based on 3-PG Model[J]. Scientia Silvae Sinicae, 2021, 57(3): 67-78.
 
												
												表1
样地数据汇总"
| 龄组 | 样本数 | 海拔 | 胸径 | 密度 | 地上生物量 | 蓄积 | 
| Age group | Number | Elevation/m | DBH/cm | Density/(trees·hm-2) | Aboveground biomass /(t·hm-2) | Volume/(m3·hm-2) | 
| 幼龄林Young | 22 | 242.85~319.41 | 10.90~11.40 | 1 005~2 283 | 43.00~94.17 | 57.96~149.80 | 
| 中龄林Middle | 48 | 242.85~319.41 | 10.11~17.23 | 1 005~2 995 | 45.21~150.86 | 88.04~293.18 | 
| 近熟林Near mature | 54 | 242.85~263.32 | 12.89~19.37 | 1 005~2 370 | 79.62~171.74 | 155.61~356.94 | 
| 成熟林Mature | 57 | 242.85~272.76 | 15.85~26.06 | 500~1 940 | 90.79~173.11 | 144.06~336.19 | 
 
												
												表2
孟家岗林场1981—2010年气象数据①"
| 月份 Month | 平均最高气温 Tmax/℃ | 平均最低气温 Tmin/℃ | 平均降雨量 PPT/mm | 霜冻天数 FD/d | 日平均辐射量 DAR/(MJ·m-2d-1) | 
| 1 | -12.2 | -23.1 | 6.4 | 30 | 5.73 | 
| 2 | -6.7 | -19.3 | 6.2 | 30 | 8.48 | 
| 3 | 1.7 | -9.7 | 14.1 | 30 | 13.50 | 
| 4 | 12.9 | 0.4 | 24.4 | 10.8 | 15.42 | 
| 5 | 20.5 | 7.9 | 49.5 | 0 | 18.68 | 
| 6 | 25.4 | 14.3 | 92.1 | 0 | 18.57 | 
| 7 | 27.3 | 17.8 | 108.5 | 0 | 17.78 | 
| 8 | 25.9 | 16.2 | 133.0 | 0 | 15.81 | 
| 9 | 20.6 | 8.6 | 57.1 | 0 | 13.32 | 
| 10 | 11.5 | 0.1 | 30.2 | 11.4 | 9.76 | 
| 11 | -0.9 | -10.6 | 10.8 | 30 | 6.30 | 
| 12 | -10.3 | -19.9 | 10.2 | 30 | 4.80 | 
 
												
												表3
长白落叶松3-PG模型关键参数"
| 类型Indicators | 参数Parameter | 值Value | 来源Source | 
| 异速生长关系与分配 Allometric relationships and partitioning | 胸径2 cm时叶干生物量比 Foliage to stem biomass ratio at DBH = 2 cm | 0.5 | 拟合值Fitted | 
| 胸径20 cm时叶干生物量分配比 Foliage: stem biomass ratio at DBH = 20 cm | 0.4 | 拟合值Fitted | |
| 干生物量与胸径关系中常数 Constant in the stem biomass v. DBH relationship | 0.096 3 | ||
| 干生物量与胸径关系中指数 Power in the stem biomass v. DBH relationship | 2.443 | ||
| 初级生物量分配到根的最大值 Maximum biomass fraction of NPP to roots | 0.4 | 拟合值Fitted | |
| 初级生物量分配到根的最小值 Minimum biomass fraction of NPP to roots | 0.2 | 拟合值Fitted | |
| 凋落物与根更新 Litterfall and root turnover | 最大凋落物速率 Maximum litterfall rate | 0.033 | 拟合值Fitted | 
| 林龄为0时的凋落物速率 Litterfall rate at age = 0 | 0.001 | 默认值Default | |
| 凋落率中间值时的林龄 Age at which litterfall rate has median value | 24 | 拟合值Fitted | |
| 根的月平均凋落速率 Average monthly root turnover rate | 0.007 | 拟合值Fitted | |
| 树龄调节 Age modifier | 植物生长最大林龄 Maximum stand age used in age modifier | 100 | 拟合值Fitted | 
| 计算林龄对于生长关系式中相对林龄的指数 Power of relative age in function for fage | 5 | 拟合值Fitted | |
| 林龄对生长影响等于0.5时的相对林龄 Relative age to give fage = 0.5 | 0.5 | 拟合值Fitted | |
| 树干死亡与自我疏伐 Stem mortality and self-thinning | 最大林龄的死亡率 Mortality rate for large age | 0.6 | 拟合值Fitted | 
| 在1 000株·hm-2下每株树最大树干质量 Max. stem mass per tree @ 1 000 trees·hm-2 | 212 | 拟合值Fitted | |
| 自然稀疏法则指数Power in self-thinning rule | 1.5 | 默认值Default | |
| 达到郁闭度年龄Age at canopy cover | 19 | 拟合值Fitted | |
| 冠层电导 Conductance | 冠层量子效率Canopy quantum efficiency | 0.056 | 
 
												
												表4
密度试验林实测数据与3-PG模型模拟值之间的统计量"
| 统计量Statistic | 斜率Slope | 截距Intercept | R2 | ME | MAE | RMSE | MRE(%) | 
| 胸径DBH/cm | 1.14 | -2.07 | 0.85 | 0.05 | 0.91 | 1.29 | 0.37 | 
| 密度Density/(trees·hm-2) | 1.07 | -150.31 | 0.97 | 29.44 | 67.60 | 98.91 | 1.84 | 
| 叶干生物量比Ratio of foliage to stem biomass | 1.87 | -0.03 | 0.67 | 0.01 | 0.01 | 0.02 | 20.84 | 
| 根生物量Root biomass /(t·hm-2) | 0.73 | 7.92 | 0.64 | -1.85 | 3.16 | 4.17 | -7.70 | 
| 干生物量Stem biomass /(t·hm-2) | 1.02 | -0.11 | 0.86 | -1.62 | 10.20 | 14.30 | -1.39 | 
| 地上生物量AGB/(t·hm-2) | 0.99 | 3.26 | 0.86 | -2.44 | 10.54 | 14.85 | -2.00 | 
| 总生物量Total biomass /(t·hm-2) | 0.95 | 10.95 | 0.84 | -4.29 | 12.55 | 17.97 | -2.94 | 
| 蓄积Volume/(m3·hm-2) | 1.15 | 13.88 | 0.82 | -19.87 | 32.34 | 44.19 | -7.87 | 
 
												
												表5
24块固定样地调查数据与3-PG模型模拟值之间的统计量"
| 统计量Statistic | 斜率Slope | 截距Intercept | R2 | ME | MAE | RMSE | MRE(%) | 
| 胸径DBH/cm | 1.05 | -1.76 | 0.96 | 1.02 | 1.13 | 1.33 | 6.48 | 
| 密度Density/(trees·hm-2) | 0.93 | 187.50 | 0.89 | 88.01 | 104.66 | 185.34 | 6.07 | 
| 叶干生物量比Ratio of foliage to stem biomass | 1.75 | -0.01 | 0.84 | 0.02 | 0.02 | 0.02 | 25.60 | 
| 根生物量Root biomass/(t·hm-2) | 0.99 | 2.02 | 0.77 | -1.87 | 2.19 | 3.07 | -9.12 | 
| 干生物量Stem biomass/(t·hm-2) | 1.19 | -31.03 | 0.84 | -10.69 | 16.17 | 19.10 | -9.89 | 
| 地上生物量AGB/(t·hm-2) | 1.18 | -35.41 | 0.84 | -10.68 | 16.17 | 19.09 | -10.97 | 
| 总生物量Total biomass/(t·hm-2) | 1.16 | -29.52 | 0.83 | -58.08 | 58.39 | 74.39 | -4.34 | 
| 蓄积Volume/(m3·hm-2) | 0.95 | 48.06 | 0.90 | -88.71 | 88.71 | 104.91 | -9.09 | 
| 陈东升, 孙晓梅, 李凤日.  基于混合模型的落叶松树高生长模型. 东北林业大学学报, 2013, 40 (10): 60- 64. doi: 10.3969/j.issn.1000-5382.2013.10.013 | |
| Chen D S ,  Sun X M ,  Li F R .  Models of tree height growth for larch based on mixed model. Journal of Northeast Forestry University, 2013, 41 (10): 60- 64. doi: 10.3969/j.issn.1000-5382.2013.10.013 | |
| 崔诗梦, 向玮.  间伐与气候对长白落叶松树轮宽度的影响. 林业科学, 2017, 53 (12): 1- 11. doi: 10.11707/j.1001-7488.20171201 | |
| Cui S M ,  Xiang W .  Effects of thinning and climate factors on Larix olgensis tree ring width. Scientia Silvae Sinicae, 2017, 53 (12): 1- 11. doi: 10.11707/j.1001-7488.20171201 | |
| 邓晓华, 张广福, 张怡春, 等. 长白落叶松人工林全林分生长模型的研究. 林业科技, 2003, 28 (1): 10- 12. | |
| Deng X H , Zhang G F , Zhang Y C , et al. Study on all stand growth model of Larix olgensis. Forestry Science and Technology, 2003, 28 (1): 10- 12. | |
| 高慧淋, 董利虎, 李凤日. 基于混合效应的人工落叶松树冠轮廓模型. 林业科学, 2017, 53 (3): 84- 93. | |
| Gao H L , Dong L H , Li F R . Crown shape model for Larix olgensis plantation based on mixed effect. Scientia Silvae Sinicae, 2017, 53 (3): 84- 93. | |
| 何丽鸿, 王海燕, 雷相东. 基于BIOME-BGC模型的长白落叶松林净初级生产力模拟参数敏感性. 应用生态学报, 2016, 27 (2): 412- 420. | |
| He L H , Wang H Y , Lei X D . Parameter sensitivity analysis of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model. Chinese Journal of Applied Ecology, 2016, 27 (2): 412- 420. | |
| 花利忠, 江希钿, 贺秀斌. 2007. 3-PG模型在华南尾叶桉人工林的应用研究. 北京林业大学学报, 29(2): 100-104. | |
| Hua L Z, Jiang X D, He X B. 2007. Application of 3-PG model in Eucalyptus urophylla plantations of southern China, 29(2): 100-104. [in Chinese] | |
| 黄华国, 窦宝成, 田园, 等. 2010. 应用过程模型3-PG模拟青海云杉生长. 北京: 中国科技论文在线. http://www.paper.edu.cn/releasepaper/content/201004-1022. | |
| Huang H G, Dou B C, Tian Y, et al. 2010. Application of the process-based forest growth model 3-PG to Picea crassifolia stand. Beijing: China Science Paper Online. http://www.paper.edu.cn/releasepaper/content/201004-1022. [in Chinese]. | |
| 黄兴召. 落叶松人工林生物量和碳储量研究. 北京: 中国林业科学研究院博士学位论文, 2014, | |
| Huang X Z . Biomass and carbon storage of larch plantation. Beijing: PhD thesis of Chinese Academy of Forestry, 2014, | |
| 刘坤, 曹林, 汪贵斌, 等. 基于3-PG模型的杉木人工林各器官生物量和LAI估算. 西北农林科技大学学报: 自然科学版, 2015, 43 (9): 57- 64. | |
| Liu K , Cao L , Wang G B , et al. Estimating biomass components and LAI of Chinese fir plantation based on 3-PG model. Journal of Northwest A & F University: Natural Science Edition, 2015, 43 (9): 57- 64. | |
| 马华文, 许翠清, 李海朝.  立地条件对长白落叶松光合特性的影响. 东北林业大学学报, 2008, 36 (8): 4- 7. doi: 10.3969/j.issn.1000-5382.2008.08.002 | |
| Ma H W ,  Xu C Q ,  Li H C .  Photosynthesis characteristics of Larix olgensis under different site conditions. Journal of Northeast Forestry University, 2008, 36 (8): 4- 7. doi: 10.3969/j.issn.1000-5382.2008.08.002 | |
| 孟宪宇. 长白落叶松直径分布收获模型的研究. 北京林业大学学报, 1991, 13 (4): 9- 16. | |
| Meng X Y . Study on the diameter distribution harvest model of Larix olgensis. Journal of Beijing Forestry University, 1991, 13 (4): 9- 16. | |
| 闵志强. 长白落叶松生物量估测模型研究. 北京: 北京林业大学硕士学位论文, 2010, | |
| Min Z Q . Study on biomass estimation model of Larix olgensis. Beijing: MS thesis of Beijing Forestry University, 2010, | |
| 孙志虎. 长白落叶松人工用材林长期生产力维持的研究. 哈尔滨: 东北林业大学博士学位论文, 2005, | |
| Sun Z H . On the Long-Term productivity Maintenance of Larix olgensis timber forest in northeastern China. Harbin: PhD thesis of Northeast Forestry University, 2005, | |
| 王烁, 董利虎, 李凤日. 人工长白落叶松枝条存活模型. 北京林业大学学报, 2018, 40 (1): 57- 66. | |
| Wang S , Dong L H , Li F R . Branch survival models of planted Larix olgensis tree. Journal of Beijing Forestry University, 2018, 40 (1): 57- 66. | |
| 吴明钦, 孙玉军, 郭孝玉, 等.  长白落叶松树冠体积和表面积模型. 东北林业大学学报, 2014, 42 (5): 1- 5. doi: 10.3969/j.issn.1000-5382.2014.05.001 | |
| Wu M Q ,  Sun Y J ,  Guo X Y , et al.  Predictive models o crown volume and crown surface area for korean larch. Journal of Northeast Forestry University, 2014, 42 (5): 1- 5. doi: 10.3969/j.issn.1000-5382.2014.05.001 | |
| 解雅麟, 王海燕, 雷相东. 基于3-PG模型的长白落叶松人工林生长和生物量模拟. 南京林业大学学报: 自然科学版, 2018, 42 (1): 141- 148. | |
| Xie Y L , Wang H Y , Lei X D . Growth and biomass simulation of Larix olgensis plantations based on the 3-PG model. Journal of Nanjing University: Natural Science Edition, 2018, 42 (1): 141- 148. | |
| 赵梅芳. 基于3-PG机理模型的杉木林碳固定及蒸散量模拟研究. 长沙: 中南林业科技大学硕士学位论文, 2008, | |
| Zhao M F . Simulating Chinese fir plantation carbon storage and evapotranspiration using the 3-PG model. Changsha: MS thesis of Central South University of Forestry and Technology, 2008, | |
| 朱智强, 蒋菊生.  3-PG生长模型及其在橡胶树栽培领域的应用. 热带农业科学, 2010, 30 (7): 4- 7. doi: 10.3969/j.issn.1009-2196.2010.07.002 | |
| Zhu Z Q ,  Jiang J S .  3-PG growth model and its application in rubber cultivation. Chinese Journal of Tropical Agriculture, 2010, 30 (7): 4- 7. doi: 10.3969/j.issn.1009-2196.2010.07.002 | |
| Almeida A C ,  Smethurst P J ,  Siggins A , et al.  Quantifying the effects of Eucalyptus plantations and management on water resources at plot and catchment scales. Hydrological Processes, 2016, 30 (25): 4687- 4703. doi: 10.1002/hyp.10992 | |
| Bryars C ,  Maier C ,  Zhao D , et al.  Fixed physiological parameters in the 3-PG model produced accurate estimates of loblolly pine growth on sites in different geographic regions. Forest Ecology and Management, 2013, 289, 501- 514. doi: 10.1016/j.foreco.2012.09.031 | |
| Coops N C ,  Hember R A ,  Waring R H .  Assessing the impact of current and projected climates on douglas-fir productivity in British Columbia, Canada, using a process-based model (3-PG). Canadian Journal of Forest Research, 2010, 40 (3): 511- 524. doi: 10.1139/X09-201 | |
| Coops N C ,  Waring R H ,  Law B E .  Assessing the past and future distribution and productivity of ponderosa pine in the Pacific Northwest using a process model, 3-PG. Ecological Modelling, 2005, 183 (1): 107- 124. doi: 10.1016/j.ecolmodel.2004.08.002 | |
| Dye P J , Jacobs S , Drew D . Verification of 3-PG growth and water-use predictions in twelve Eucalyptus plantation stands in Zululand, South Africa. Forest Ecology & Management, 2004, 193 (1/2): 197- 218. | |
| Dye P J .  Modelling growth and water use in four Pinus patula stands with the 3-PG model. Southern African Forestry Journal, 2001, 191 (1): 53- 63. doi: 10.1080/20702620.2001.10434151 | |
| Forrester D I , Tang X . Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model. Ecological Modelling, 2015, 319, 233- 254. | |
| Gonzalez-Benecke C A ,  Jokela E J ,  Cropper W P , et al.  Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure. Forest Ecology and Management, 2014, 327, 55- 75. doi: 10.1016/j.foreco.2014.04.030 | |
| Hung T T ,  Almeida A C ,  Eyles A , et al.  Predicting productivity of Acacia hybrid plantations for a range of climates and soils in Vietnam. Forest Ecology and Management, 2016, 367, 97- 111. doi: 10.1016/j.foreco.2016.02.030 | |
| Jégo G ,  Thibodeau F ,  Morissette R , et al.  Estimating the yield potential of short-rotation willow in Canada using the 3-PG model. Canadian Journal of Forest Research, 2017, 47 (5): 636- 647. doi: 10.1139/cjfr-2016-0353 | |
| Landsberg J J , Waring R H , Coops N C . Performance of the forest productivity model 3-PG applied to a wide range of forest types. Forest Ecology and Management, 2003, 172 (2/3): 199- 214. | |
| Landsberg J J ,  Waring R H .  A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 1997, 95 (3): 209- 228. doi: 10.1016/S0378-1127(97)00026-1 | |
| López-Serrano F R ,  Martínez-García E ,  Dadi T , et al.  Biomass growth simulations in a natural mixed forest stand under different thinning intensities by 3-PG process-based model. European Journal of Forest Research, 2015, 134 (1): 167- 185. doi: 10.1007/s10342-014-0841-3 | |
| Minunno F ,  Xenakis G ,  Perks M P , et al.  Calibration and validation of a simplified process-based model for the prediction of the carbon balance of Scottish Sitka spruce (Picea sitchensis) plantations. Canadian Journal of Forest Research, 2010, 40 (12): 2411- 2426. doi: 10.1139/X10-181 | |
| Monteith J L .  Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 1972, 9 (3): 747- 766. doi: 10.2307/2401901 | |
| Reineke L H . Perfecting a stand-density index for even-age forests. Journal of Agricultural Research, 1933, 46 (1): 627- 638. | |
| Sampson D A , Waring R H , Maier C A , et al. Fertilization effects on forest carbon storage and exchange, and net primary production: a new hybrid process model for stand management. Forest Ecology and Management, 2006, 221 (1): 91- 109. | |
| Sands P J , Landsberg J J . Parameterisation of 3-PG for plantation grown Eucalyptus globulus. Forest Ecology and Management, 2002, 163 (1): 273- 292. | |
| Stape J L , Ryan M G , Binkley D . Testing the utility of the 3-PG model for growth of Eucalyptus grandis×E. urophylla with natural and manipulated supplies of water and nutrients. Forest Ecology and Management, 2004, 193 (1/2): 219- 234. | |
| Subedi S , Fox T R . Modeling repeated fertilizer response and one-time midrotation fertilizer response in loblolly pine plantations using FR in the 3-PG process model. Forest Ecology and Management, 2016, 380, 90- 99. | |
| Waring R H . A process model analysis of environmental limitations on the growth of Sitka spruce plantations in Great Britain. Forestry, 2000, 73 (1): 65- 79. | |
| Xenakis G , Ray D , Mencuccini M . Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model. Ecological Modelling, 2008, 219 (1): 1- 16. | |
| Zhao M , Xiang W , Peng C , et al. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model. Forest Ecology and Management, 2009, 257 (6): 1520- 1531. | 
| [1] | 李锦隆,王满堂,李涵诗,陈晓萍,孙俊,钟全林,程栋梁. 冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响[J]. 林业科学, 2021, 57(2): 62-71. | 
| [2] | 刘秀红,姜春前,徐睿,何潇,齐梦娟. 相容性单木生物量模型估计方法的比较——以青冈栎为例[J]. 林业科学, 2020, 56(9): 164-173. | 
| [3] | 魏晶昱,范文义,于颖,毛学刚. GF-3全极化SAR数据极化分解估算人工林冠层生物量[J]. 林业科学, 2020, 56(9): 174-183. | 
| [4] | 荣俊冬,凡莉莉,陈礼光,张迎辉,何天友,陈凌艳,宋鲲鹏,郑郁善. 不同施氮模式和施氮量对福建柏幼苗生物量分配和根系生长的影响[J]. 林业科学, 2020, 56(7): 175-184. | 
| [5] | 竹万宽,许宇星,王志超,杜阿朋. 中国桉树人工林生物量估算系数及影响要素[J]. 林业科学, 2020, 56(5): 1-11. | 
| [6] | 董利虎,刘永帅,宋博,周翼飞,李凤日. 立木含碳量估算方法比较[J]. 林业科学, 2020, 56(4): 46-54. | 
| [7] | 武金翠,周军,张宇,余晓燕,石雷,漆良华. 毛竹林固碳增汇价值的动态变化:以福建省为例[J]. 林业科学, 2020, 56(4): 181-187. | 
| [8] | 周律,欧光龙,王俊峰,胥辉. 基于空间回归模型的思茅松林生物量遥感估测及光饱和点确定[J]. 林业科学, 2020, 56(3): 38-47. | 
| [9] | 曹业凡,汪来发,王曦茁,范结红. 松材线虫对长白落叶松的致病性[J]. 林业科学, 2020, 56(11): 108-115. | 
| [10] | 邓磊,朱春云,于世川,祁银燕,张文辉,杜盛,关晋宏. 祁连山青海云杉中龄林混交度对细根形态特征的影响[J]. 林业科学, 2020, 56(1): 191-200. | 
| [11] | 刘春洋, 史田, 史国安, 杨林菲, 范学峰, 高双成, 张改娜. 不同移栽时期对‘凤丹’牡丹植株生长效应及其综合评价[J]. 林业科学, 2019, 55(8): 54-62. | 
| [12] | 薛春泉, 徐期瑚, 林丽平, 何潇, 曹磊, 李海奎. 基于异速生长和理论生长方程的广东省木荷生物量动态预测[J]. 林业科学, 2019, 55(7): 86-94. | 
| [13] | 丁令智, 满秀玲, 肖瑞晗, 蔡体久. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化[J]. 林业科学, 2019, 55(7): 178-186. | 
| [14] | 常建国. 油松树干横截面面积年增长量的垂直分布及与材积年增长量和叶量的关系[J]. 林业科学, 2019, 55(6): 55-64. | 
| [15] | 李亚藏, 冯仲科. 气候敏感的马尾松生物量相容性方程系统研建[J]. 林业科学, 2019, 55(5): 65-73. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||