曹伟,李露,赵鹏志,等. 2016.坡地黑土团聚体氮库及其分布.东北林业大学学报, 44(5):63-66. (Cao W, Li L, Zhao P Z, et al. 2016. Organic nitrogen pool and its distribution of aggregates in sloping black soils. Journal of Northeast Forestry University, 44(5):63-66.[in Chinese]) 陈海滨,马秀丽,陈志彪,等. 2016.南方稀土矿区水土保持植物根际土壤碳氮及pH特征.土壤学报, 53(5):1334-1341. (Chen H B, Ma X L, Chen Z B, et al. 2016. Carbon,nitrogen and pH in rhizosphere of soil-water conserving plants in rare earth mining area in south China. Acta Pedologica Sinica, 53(5):1334-1341.[in Chinese]) 陈立新. 2005.土壤实验实习教程.哈尔滨:东北林业大学出版社. (Chen L X. 2005. Soil experiment practice course. Harbin:Northeast Forestry University Press.[in Chinese]) 董敏慧,张良成,文丽,等. 2017.松树-樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究.中南林业科技大学学报, 37(11):146-153. (Dong M H, Zhang L C, Wen L, et al. 2017. Soil microbial biomass C, N and diversity characteristics in pure and mixed forest of Pinus and Cinnamomun. Journal of Central South University of Forestry & Technology, 37(11):146-153.[in Chinese]) 段北星,满秀玲,宋浩,等. 2018.大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征.北京林业大学学报,40(2):40-50. (Duan B X, Man X L, Song H, et al. 2018. Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing'an Mountains of northeastern China. Journal of Beijing Forestry University,40(2):40-50.[in Chinese]) 何云,周义贵,李贤伟,等. 2013.台湾桤木林草复合模式土壤微生物量碳季节动态.林业科学, 49(7):26-33. (He Y, Zhou Y G, Li X W, et al. 2013. Seasonal dynamics of soil microbial biomass carbon in Alnus formosana forest-grass compound models. Scientia Silvae Sinicae, 49(7):26-33.[in Chinese]) 李红运,辛颖,赵雨森. 2016.火烧迹地不同恢复方式土壤有机碳分布特征.应用生态学报, 27(9):2747-2753. (Li H Y, Xin Y, Zhao Y S. 2016. Distribution characteristics of soil organic carbon of burned area under different restorations. Chinese Journal of Applied Ecology, 27(9):2747-2753.[in Chinese]) 李胜蓝,方晰,项文化,等. 2014.湘中丘陵区4种森林类型土壤微生物生物量碳氮含量.林业科学, 50(5):8-16. (Li S L, Fang X, Xiang W H, et al. 2014. Soil microbial biomass carbon and nitrogen concentrations in four subtropical forests in hilly region of central Hunan Province,China. Scientia Silvae Sinicae, 50(5):8-16.[in Chinese]) 林尤伟,金光泽. 2016.冻融期去根处理对小兴安岭6种林型土壤微生物量的影响.生态学报, 36(19):6159-6169. (Lin Y W, Jin G Z. 2016. Effects of root resectioning on soil microbial biomass in six forest types in the Xiaoxing'an Mountains during freezing-thawing cycles. Acta Ecologica Sinica, 36(19):6159-6169.[in Chinese]) 刘顺,盛可银,刘喜帅,等. 2017.陈山红心杉根际土壤有机碳、氮含量及根际效应.生态学杂志, 36(7):1957-1964. (Liu S, Sheng K Y, Liu X S, et al. 2017. Contents of soil organic carbon and nitrogen forms in rhizosphere soil of Cunninghamia lanceolata and the rhizopshere effect. Chinese Journal of Ecology, 36(7):1957-1964.[in Chinese]) 庞圣江,杨保国,刘士玲,等. 2018.桂西北喀斯特山区4种森林表土土壤有机碳含量及其养分分布特征.中南林业科技大学学报,38(4):60-64,71. (Pang S J, Yang B G, Liu S L, et al. 2018. The distribution of organic carbon and soil nutrients under four forest types in karst mountain areas of northwest Guangxi, China. Journal of Central South University of Forestry & Technology,38(4):60-64,71.[in Chinese]) 漆良华,张旭东,周金星,等. 2009.湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征.林业科学, 45(8):14-20. (Qi L H, Zhang X D, Zhou J X, et al. 2009. Soil microbe quantites, microbial carbon and nitrogen and fractal characteristics under different vegetation restoration patterns in watershed, northwest Hunan. Scientia Silvae Sinicae, 45(8):14-20.[in Chinese]) 王宝荣,杨佳佳,安韶山,等. 2018.黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响.应用生态学报, 29(1):247-259. (Wang B R, Yang J J, An S S, et al. 2018. Effects of vegetation and topography features on ecological stoichiometry of soil and soil microbial biomass in the hilly-gully region of the Loess Plateau, China. Chinese Journal of Applied Ecology, 29(1):247-259.[in Chinese]) 王风芹,田丽青,宋安东,等. 2015.华北刺槐林与自然恢复植被土壤微生物量碳、氮含量四季动态.林业科学, 51(3):16-24. (Wang F Q, Tian L Q, Song A D, et al. 2015. Seasonal dynamics of microbial biomass carbon and nitrogen in soil of Robinia pseudoacacia forests and near-naturally restored vegetation in northern China. Scientia Silvae Sinicae, 51(3):16-24.[in Chinese]) 王宁,杨雪,李世兰,等. 2016.不同海拔红松混交林土壤微生物量碳、氮的生长季动态.林业科学, 52(1):150-158. (Wang N, Yang X, Li S L, et al. 2016. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient. Scientia Silvae Sinicae, 52(1):150-158.[in Chinese]) 许淼平,任成杰,张伟,等. 2018.土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制.应用生态学报,29(7):2445-2454. (Xu M P, Ren C J, Zhang W, et al. 2018. Responses mechanism of C:N:P stoichiometry of soil microbial biomass and soil enzymes to climate change. Chinese Journal of Applied Ecology,29(7):2445-2454.[in Chinese]) 杨成德,龙瑞军,陈秀蓉,等. 2007.东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征.草业学报, 16(4):62-68. (Yang C D, Long R J, Chen X R, et al. 2007. Study on microbial biomass and its correlation with the soil physical properties under the alpine grassland of the east of Qilian Mountains. Acta Prataculturae Sinica, 16(4):62-68.[in Chinese]) Angst G, Kögel-Knabner I, Kirfel K, et al. 2016. Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech(Fagus sylvatica L.). Geoderma, 264(part A):179-187. Balakrishnan B, Sahu B K, Lourduraj A V, et al. 2017. Assessment of heavy metal concentrations and associated resistant bacterial communities in bulk and rhizosphere soil of Avicennia marina, of Pichavaram mangrove, India. Environmental Earth Sciences, 76:58. Bargali K, Manral V, Padalia K, et al. 2018. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena, 171:125-135. Berg G, Smalla K. 2010. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. Fems Microbiology Ecology, 68(1):1-13. Bijayalaxmi D N, Yadava P S. 2006. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology, 31(3):220-227. Bird J A, Herman D J, Firestone M K. 2011. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biology & Biochemistry, 43(4):718-725. Carter M R, Gregorich E G, Angers D A, et al. 1999. Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions. Canadian Journal of Soil Science, 79(4):507-520. Chen C R, Xu Z H, Zhang S L, et al. 2005. Soluble organic nitrogen pools in forest soils of subtropical Australia. Plant and Soil, 277(1/2):285-297. Coleman D C, Oades J M, Uehara G. 1989. Dynamics of soil organic matter in tropical ecosystems. Soil Science, 151(2):184. Cui Y, Fang L, Guo X, et al. 2018. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biology & Biochemistry, 116:11-21. Diazravina M, Acea M J, Carballas T. 1995. Seasonal changes in microbial biomass and nutrient flush in forest soils.. Biology and Fertility of Soils, 19(2/3):220-226. Edwards K A, Mcculloch J, Kershaw G P, et al. 2006. Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biology & Biochemistry, 38(9):2843-2851. Fraser T D, Lynch D H, Gaiero J, et al. 2017. Quantification of bacterial non-specific acid(phoC), and alkaline(phoD)phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Applied Soil Ecology, 111:48-56. Freppaz M, Said-Pullicino D, Filippa G, et al. 2014. Winter-spring transition induces changes in nutrients and microbial biomass in mid-alpine forest soils. Soil Biology & Biochemistry, 78:54-57. Frey S D, Drijber R, Smith H, et al. 2008. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biology and Biochemistry, 40(11):2904-2907. Gartner T B, Treseder K K, Malcolm G M, et al. 2012. Extracellular enzyme activity in the mycorrhizospheres of a boreal fire chrono sequence. Pedobiologia-International Journal of Soil Biology, 55(2):121-127. Hartmann A, Rothballer M, Schmid M. 2008. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant & Soil, 312(1/2):7-14. Harris D, Voroney RP, Paul EA. 2007. Measurement of microbial biomass N:C by chloroform fumigation-incubation. Canadian Journal of Soil Science, 77(4):507-514. Jangid K, Williams M A, Franzluebbers A J, et al. 2011. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biology and Biochemistry, 43(10):2184-2193. Kim S, Li G, Han S H, et al. 2018. Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora, Sieb. et Zucc. forests after 7 years. Annals of Forest Science, 75:13. Li H, Yang X, Weng B, et al. 2016. The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil. Soil Biology & Biochemistry, 100:59-65. Moreno J L, Torres I F, García C, et al. 2019. Land use shapes the resistance of the soil microbial community and the C cycling response to drought in a semi-arid area. Science of the Total Environment, 648:1018-1030. Mukhopadhyay S, Masto R E, Cerdà A, et al. 2016. Rhizosphere soil indicators for carbon sequestration in a reclaimed coal mine spoil. Catena, 141:100-108. Paul E A, Clark F E. 1996. Soil microbiology and biochemistry. San Diego:Academic Press. Phillips R P, Fahey T J. 2008. The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soilence Society of America Journal, 72(2):453-461. Qiu S J, Ju X T, Ingwersen J, et al. 2010. Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production. Soil & Tillage Research, 107(2):80-87. Schindlbacher A, Rodler A, Kuffner M, et al. 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology & Biochemistry, 43(7):1417-1425. Simpson A C, Zabowski D, Rochefort R M, et al. 2019. Increased microbial uptake and plant nitrogen availability in response to simulated nitrogen deposition in alpine meadows. Geoderma, 336:68-80. Stevenson B A, Hunter D W F, Rhodes P L. 2014. Temporal and seasonal change in microbial community structure of an undisturbed, disturbed, and carbon-amended pasture soil. Soil Biology & Biochemistry, 75:175-185. Vives-Peris V, Molina L, Segura A, et al. 2018. Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria. Journal of Plant Physiology, 228:208-217. Yokobe T, Hyodo F, Tokuchi N. 2018. Seasonal effects on microbial community structure and nitrogen dynamics in temperate forest soil. Forests,9(3):153. |