欢迎访问林业科学,今天是

林业科学 ›› 2020, Vol. 56 ›› Issue (4): 181-187.doi: 10.11707/j.1001-7488.20200420

• 研究简报 • 上一篇    下一篇

毛竹林固碳增汇价值的动态变化:以福建省为例

武金翠1,周军1,张宇2,余晓燕3,石雷2,4,*,漆良华2   

  1. 1. 苏州农业职业技术学院园林工程学院 苏州 215008
    2. 国家林业和草原局竹藤科学与技术重点实验室 国际竹藤中心 北京 100102
    3. 北京水务咨询公司 北京 100048
    4. 滇南竹林生态系统国家定位观测研究站 沧源 677400
  • 收稿日期:2018-07-26 出版日期:2020-04-25 发布日期:2020-05-29
  • 通讯作者: 石雷
  • 基金资助:
    国际竹藤中心基本科研业务费重点专项(1632015005);林业软科学研究(2018-R10);苏州园林生态文化价值评价研究

Carbon Sequestration Value and Its Change of Phyllostachys edulis Forest: A Case Study of Fujian Province

Jincui Wu1,Jun Zhou1,Yu Zhang2,Xiaoyan Yu3,Lei Shi2,4,*,Lianghua Qi2   

  1. 1. College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture Suzhou 215008
    2. National Forestry and Grassland Administration Key Laboratory for Science and Technology of Bamboo & Rattan International Center for Bamboo and Rattan Beijing 100102
    3. Beijing Water Consulting Company Beijing 100048
    4. National Observation and Research Station of Bamboo Forest Ecosystem in South Yunnan Province Cangyuan 677400
  • Received:2018-07-26 Online:2020-04-25 Published:2020-05-29
  • Contact: Lei Shi

摘要:

目的: 开展毛竹林固碳增汇价值核算并探讨其动态变化,以掌握毛竹林生态系统碳汇价值、科学评价竹林生态系统服务功能,为碳计量和碳贸易提供理论与技术支撑。方法: 基于福建省毛竹林生长量、实测生物量和问卷调查等数据,利用中分辨率成像光谱仪(MODIS)植被指数(EVI)建立生物量异速生长和反演模型,开展福建毛竹林(包括地上活立竹、择伐竹、土壤和已收获竹笋4个组分)固碳增汇价值核算及其动态变化研究。结果: 2001—2014年,福建省毛竹林每期(2年为1期)固碳增汇价值平均为5.53亿元,研究期内固碳总价值为38.71亿元;竹林生态系统不同组分(地上活立竹、择伐竹、土壤和已收获竹笋)的固碳价值存在较大差异,其中林分地上活立竹、择伐竹、已收获竹笋和土壤的固碳增汇价值贡献比分别为73.78%、16.11%、13.56%和3.65%;2001—2014年,毛竹林固碳增汇价值在波动中呈上升趋势,以每期每公顷157.69元的速率增加;研究末期和初期相比,面积占比31.26%的毛竹林固碳增汇价值降低,每公顷平均降幅256.76元;面积占比68.74%的毛竹林固增汇价值增加,每公顷平均增幅640.80元。结论: 2001—2014年,福建省毛竹林表现为一个不断增加的碳汇;与地上活立竹、已收获竹笋和土壤相比,择伐竹的固碳增汇价值贡献最大,择伐是毛竹林不可或缺的经营管理措施。

关键词: 生物量, 碳储量, 生态系统服务, 反演模型, 武夷山

Abstract:

Objective: Carbon sequestration value (CSV) of (Phyllostachys edulis) forest were estimated and its spatiotemporal change was also examined,so as to exemplify an estimation method of CSV and contribute to a better understanding of the ecosystem service function of bamboo forest,thereby providing a theoretical and technical basis for carbon accounting and carbon trade. Method: Phyllostachys edulis forest in Fujian Province,accounting for 1/6 of the China's bamboo forest in area,was identified as a case study. We first fitted the biomass allometric equation and inverse models,then calculated the CSV of each bamboo component (including stand live culms,selectively cutting culms,bamboo shoot and soil) and also examined their changes from 2001 to 2014, using the data of stand increment,biomass,MODIS EVI and from questionnaires. Result: Over the past 14 years,the mean CSV of moso bamboo forest was estimated approximately RMB 553 million per time period (every two years),and a total CSV of the whole province was about RMB 38.71 billion. The CSV of bamboo stand and different stand components varied greatly; standing live culms,selective cutting culms,bamboo shoot and soil carbon accounted for 73.78%,16.11%,13.56%,and 3.65% of the total,respectively. During the study time,the CSV of moso bamboo forest showed an upward trend in fluctuation,with a increasing rate of RMB 157.69 per hectare per time period. Spatial distribution of the CSV showed a large variation; about 31.26% of the bamboo stands decreased in CSV,with an mean decrease of RMB 256.76 per hectare; about 68.74% of the bamboo stands increased,with a mean increase of RMB 640.80 per hectare. Conclusion: Moso bamboo forest in Fujian Province has shown an increasing carbon sink over the past 14 years. Compared with the three stand components,i.e.,standing live culms,bamboo shoot and soil,the selectively cutting culms has the largest contribution to CSV of moso bamboo forest ecosystem. Given that bamboo forests are at risk of degradation and very likely to be a carbon source without an intensive management,the selectively cutting culms is,therefore,an indispensable management measure to enhance the potential of carbon sequestration.

Key words: biomass, carbon stock, ecosystem service, inverse model, Wuyishan Mountain

中图分类号: