林业科学 ›› 2020, Vol. 56 ›› Issue (9): 174-183.doi: 10.11707/j.1001-7488.20200919
魏晶昱,范文义*,于颖,毛学刚
收稿日期:
2018-06-25
出版日期:
2020-09-25
发布日期:
2020-10-15
通讯作者:
范文义
基金资助:
Jingyu Wei,Wenyi Fan*,Ying Yu,Xuegang Mao
Received:
2018-06-25
Online:
2020-09-25
Published:
2020-10-15
Contact:
Wenyi Fan
摘要:
目的: 探讨GF-3全极化SAR数据在人工林冠层生物量估算中的潜力,提出一种准确估算森林冠层生物量的方法。方法: 以内蒙古赤峰市旺业甸林场油松和华北落叶松人工林为研究对象,以GF-3全极化SAR数据为基础,结合地面实测22块样地数据,采用Freeman三分量分解、Freeman二分量分解、Yamaguchi三分量分解3种极化分解方法获得极化分解分量,分别构建各极化分解方法所对应的冠-地散射比参数(R1、R2和R3),应用多元逐步回归方法建立森林冠层生物量与SAR提取参数回归模型,并运用留一法交叉检验对模型进行评价。结果: 不同极化分解方法所得分量与冠层生物量均存在较为显著的负相关关系,Freeman三分量分解体散射分量与冠层生物量的相关性(r=-0.68)高于二次散射分量(r=-0.6)和表面散射分量(r=-0.424),类似地,Freeman二分量分解体散射分量与冠层生物量的相关性(r=-0.718)高于地面散射分量(r=-0.62),而Yamaguchi三分量分解二次散射分量与冠层生物量的相关性(r=-0.743)最高,与Freeman三分量分解相比,Freeman二分量分解、Yamaguchi三分量分解的极化分解分量与冠层生物量具有更好的相关性。应用多元逐步回归方法获得的最优参数为Freeman二分量分解和Yamaguchi三分量分解对应的冠-地散射比参数R2和R3,建立的冠层生物量估算模型R2=0.658,RMSE=4.943 t·hm-2;交叉验证结果表明,模型预测误差较低(ME=-0.665 t·hm-2,MAE=4.845 t·hm-2,MRE=3.33%,AMRE=23.233%,P=91.5%),且模型通过置信椭圆F检验,模型预测值与实测值一致,模拟结果较好,预测值大致分布在1:1直线附近,模型未出现饱和点。结论: Freeman三分量分解、Freeman二分量分解、Yamaguchi三分量分解3种极化分解方法获得的极化分解分量均与冠层生物量具有显著相关关系,极化相干矩阵旋转变换、体散射模型优化可有效提高森林区域极化分解效果,冠-地散射比参数对冠层生物量的敏感性高于任何单一极化分解分量,多种SAR极化分解参数共同使用能够较好估算冠层生物量。极化分解估算森林冠层生物量具有可行性,且不存在明显的饱和性问题。
中图分类号:
魏晶昱,范文义,于颖,毛学刚. GF-3全极化SAR数据极化分解估算人工林冠层生物量[J]. 林业科学, 2020, 56(9): 174-183.
Jingyu Wei,Wenyi Fan,Ying Yu,Xuegang Mao. Polarimetric Decomposition Parameters for Artificial Forest Canopy Biomass Estimation Using GF-3 Fully Polarimetric SAR Data[J]. Scientia Silvae Sinicae, 2020, 56(9): 174-183.
表1
样地数据统计"
样地序号 Sample No. | 株数 Number of trees/hm-2 | 胸径DBH(D)/cm | 树高Tree height(H)/m | 冠幅Crown width/m | |||||
平均值Mean | 标准差SD | 平均值Mean | 标准差SD | 平均值Mean | 标准差SD | ||||
1 | 2 816 | 11.00 | 3.24 | 8.40 | 2.10 | 1.27 | 0.53 | ||
2 | 1 136 | 16.68 | 4.85 | 13.01 | 3.30 | 1.87 | 0.49 | ||
3 | 1 072 | 16.23 | 6.00 | 11.69 | 3.66 | 1.79 | 0.99 | ||
4 | 1 216 | 17.56 | 7.01 | 11.15 | 3.72 | 2.18 | 0.72 | ||
5 | 2 032 | 12.47 | 4.13 | 8.80 | 2.33 | 1.49 | 0.44 | ||
6 | 1 728 | 11.81 | 3.15 | 7.36 | 1.37 | 1.44 | 0.40 | ||
7 | 2 000 | 13.32 | 2.95 | 11.24 | 1.77 | 1.34 | 0.42 | ||
8 | 2 288 | 11.13 | 3.57 | 8.92 | 1.80 | 1.25 | 0.42 | ||
9 | 1 840 | 11.38 | 3.72 | 8.05 | 1.87 | 1.39 | 0.40 | ||
10 | 1 616 | 14.82 | 4.39 | 10.72 | 2.71 | 1.31 | 0.44 | ||
11 | 1 680 | 12.44 | 3.57 | 12.06 | 2.49 | 1.30 | 0.36 | ||
12 | 2 096 | 12.62 | 2.09 | 11.06 | 1.63 | 1.20 | 0.30 | ||
13 | 1 712 | 10.90 | 2.53 | 8.41 | 1.14 | 1.37 | 0.32 | ||
14 | 816 | 16.89 | 2.58 | 13.49 | 1.44 | 1.75 | 0.29 | ||
15 | 288 | 27.91 | 4.38 | 15.67 | 1.05 | 3.24 | 0.52 | ||
16 | 5 264 | 6.85 | 1.59 | 6.99 | 0.84 | 0.87 | 0.15 | ||
17 | 1 616 | 11.16 | 2.38 | 9.88 | 1.64 | 1.13 | 0.23 | ||
18 | 1 024 | 18.23 | 5.35 | 15.14 | 3.23 | 1.71 | 0.51 | ||
19 | 944 | 19.91 | 4.71 | 18.12 | 4.19 | 1.49 | 0.36 | ||
20 | 1 344 | 16.87 | 3.81 | 14.36 | 2.14 | 1.24 | 0.36 | ||
21 | 592 | 23.66 | 6.51 | 18.40 | 9.75 | 2.23 | 0.80 | ||
22 | 1 344 | 17.15 | 3.22 | 16.89 | 1.76 | 1.37 | 0.34 |
表2
枝、叶生物量模型①"
树种Species | 组分Components | 相对生长方程Allometric equations | 确定系数Coefficient of determination |
油松P.tabulaeformis | WB | lnWB=-4.676 29+0.912 519 ln(D2H) | 0.865 |
WL | lnWL=-3.856 41+0.763 557 ln(D2H) | 0.830 | |
华北落叶松 L. principis-rupprechtii | WB | lnWB=-3.170 2+1.850 4 lnD | 0.848 |
WL | lnWL=-2.349 8+1.452 2 lnD | 0.723 |
表3
样地冠层生物量"
样地序号 Sample No. | 林分类型 Stand type | 冠层生物量 Canopy biomass/ (t·hm-2) |
1 | 油松P.tabulaeformis | 31.08 |
2 | 油松P.tabulaeformis | 36.93 |
3 | 油松P.tabulaeformis | 32.60 |
4 | 油松P.tabulaeformis | 40.98 |
5 | 油松P.tabulaeformis | 29.45 |
6 | 油松P.tabulaeformis | 18.25 |
7 | 油松P.tabulaeformis | 35.89 |
8 | 油松P.tabulaeformis | 26.86 |
9 | 油松P.tabulaeformis | 20.32 |
10 | 油松P.tabulaeformis | 36.22 |
11 | 华北落叶松L. principis-rupprechtii | 15.47 |
12 | 华北落叶松L. principis-rupprechtii | 18.54 |
13 | 华北落叶松L. principis-rupprechtii | 13.24 |
14 | 华北落叶松L. principis-rupprechtii | 11.75 |
15 | 华北落叶松L. principis-rupprechtii | 9.71 |
16 | 华北落叶松L. principis-rupprechtii | 17.08 |
17 | 华北落叶松L. principis-rupprechtii | 11.56 |
18 | 华北落叶松L. principis-rupprechtii | 22.97 |
19 | 华北落叶松L. principis-rupprechtii | 18.91 |
20 | 华北落叶松L. principis-rupprechtii | 19.63 |
21 | 华北落叶松L. principis-rupprechtii | 16.13 |
22 | 华北落叶松L. principis-rupprechtii | 21.71 |
陈尔学. 合成孔径雷达森林生物量估测研究进展. 世界林业研究, 1999. 12 (6): 18- 23. | |
Chen E X . Development of forest biomass estimation using SAR data. World Forestry Research, 1999. 12 (6): 18- 23. | |
董利虎. 2015.东北林区主要树种及林分类型生物量模型研究.哈尔滨:东北林业大学博士学位论文. | |
Dong L H. 2015. Developing individual and stand-level biomass equations in northeast China forest area. Harbin: PhD thesis of Northeast Forestry University.[in Chinese] | |
胡珍珠, 潘存德, 潘鑫, 等. 基于光谱水分指数的核桃叶片含水量估算模型. 林业科学, 2016. 52 (12): 39- 49. | |
Hu Z Z , Pan C D , Pan X , et al. Estimation models for water content of walnut leaves based on spectral moisture index. Scientia Silvae Sinicae, 2016. 52 (12): 39- 49. | |
李凤日. 长白落叶松人工林树冠形状的模拟. 林业科学, 2004. 40 (5): 16- 24. | |
Li F R . Modeling crown profile of Larix olgensis trees. Scientia Silvae Sinicae, 2004. 40 (5): 16- 24. | |
李兰, 陈尔学, 李增元, 等. 森林地上生物量的多基线InSAR层析估测方法. 林业科学, 2017. 53 (11): 85- 93. | |
Li L , Chen E X , Li Z Y , et al. Forest above-ground biomass estimation based on multi-based InSAR tomography. Scientia Silvae Sinicae, 2017. 53 (11): 85- 93. | |
刘琪璟. 嵌套式回归建立树木生物量模型. 植物生态学报, 2009. 32 (2): 331- 337. | |
Liu Q J . Nested regression for establishing tree biomass equations. Chinese Journal of Plant Ecology, 2009. 32 (2): 331- 337. | |
刘兆刚, 刘继明, 李凤日, 等. 樟子松人工林树冠结构的分形分析. 植物研究, 2005. 25 (4): 465- 470. | |
Liu Z G , Liu J M , Li F R , et al. Fractal analysis of crown structure in Pinus sylvestris var. mongolica plantation. Bulletin of Botanical Research, 2005. 25 (4): 465- 470. | |
罗云建, 张小全, 王效科, 等. 华北落叶松人工林生物量及其分配模式. 北京林业大学学报, 2009. 31 (1): 13- 18. | |
Luo Y J , Zhang X Q , Wang X K , et al. Biomass and its distribution patterns of Larix principis-rupprechtii plantations in northern China. Journal of Beijing Forestry University, 2009. 31 (1): 13- 18. | |
马钦彦. 中国油松生物量的研究. 北京林业大学学报, 1989. 11 (4): 1- 10. | |
Ma Q Y . A study on the biomass of Chinese pine forests. Journal of Beijing Forestry University, 1989. 11 (4): 1- 10. | |
马泽清, 刘琪璟, 徐雯佳, 等. 基于TM遥感影像的湿地松林生物量研究. 自然资源学报, 2008. 23 (3): 467- 478. | |
Ma Z Q , Liu Q J , Xu W J , et al. Study on biomass of Pinus elliottii forest in subtropical China assisted with remote sensing. Journal of Natural Resources, 2008. 23 (3): 467- 478. | |
闵志强, 孙玉军. 长白落叶松林生物量的模拟估测. 应用生态学报, 2010. 21 (6): 1359- 1366. | |
Min Z Q , Sun Y J . Simulation of above ground biomass in Larix olgensis plantation. Chinese Journal of Applied Ecology, 2010. 21 (6): 1359- 1366. | |
沈浩, 蔡佳宁, 李萌姣, 等. 中国森林冠层生物多样性监测. 生物多样性, 2017. 25 (3): 229- 236. | |
Shen H , Cai J N , Li M J , et al. On Chinese forest canopy biodiversity monitoring. Biodiversity Science, 2017. 25 (3): 229- 236. | |
宋茜, 范文义. 大兴安岭植被生物量的ALOS PALSAR估算. 应用生态学报, 2011. 22 (2): 303- 308. | |
Song Q , Fan W Y . ALOS PALSAR estimation of vegetation biomass in Daxing'anling region. Chinese Journal of Applied Ecology, 2011. 22 (2): 303- 308. | |
王树文, 赵珊, 张长利, 等. 基于成像光谱技术的寒地玉米苗期冠层氮含量预测模型. 农业工程学报, 2016. 32 (13): 149- 154. | |
Wang S W , Zhao S , Zhang C L , et al. Forecasting model for nitrogen content of maize canopy during seedling stage in cold region based on imaging spectral technique. Transactions of the Chinese Society of Agricultural Engineering, 2016. 32 (13): 149- 154. | |
徐小军, 周国模, 杜华强, 等. 基于Landsat TM数据估算雷竹林地上生物量. 林业科学, 2011. 47 (9): 1- 6. | |
Xu X J , Zhou G M , Du H Q , et al. Estimation of aboveground biomass of Phyllostachys praecox forest based on Landsat Thematic Mapper image. Scientia Slivae Sinicae, 2011. 47 (9): 1- 6. | |
尹惠妍, 李海奎. 基于蓄积的森林生物量估算方法的对比分析. 林业科学研究, 2014. 27 (6): 848- 853. | |
Yin H Y , Li H K . Comparison of the method estimating forest biomass based on stock volume. Forest Research, 2014. 27 (6): 848- 853. | |
An W , Cui Y , Yang J . Three-component model-based decomposition for polarimetric SAR data. IEEE Transactions on Geoscience & Remote Sensing, 2010. 48 (6): 2732- 2739. | |
Austin J M , Mackey B G , Niel K P V . Estimating forest biomass using satellite radar:an exploratory study in a temperate Australian Eucalyptus forest. Forest Ecology & Management, 2003. 176 (1): 575- 583. | |
Beaudoin A , Toan T L , Goze S , et al. Retrieval of forest biomass from SAR data. International Journal of Remote Sensing, 1994. 15 (14): 2777- 2796.
doi: 10.1080/01431169408954284 |
|
Cawley G C , Talbot N L . Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks, 2004. 17 (10): 1467- 1475.
doi: 10.1016/j.neunet.2004.07.002 |
|
Chowdhury T A , Thiel C , Schmullius C , et al. Polarimetric parameters for growing stock volume estimation using ALOS PALSAR L-band data over siberian forests. Remote Sensing, 2013. 5 (11): 5725- 5756.
doi: 10.3390/rs5115725 |
|
Cloude S R , Pottier E . A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience & Remote Sensing, 1996. 34 (2): 498- 518. | |
Cloude S R , Papathanassiou K P . Polarimetric SAR interferometry. IEEE Transactions on Geoscience & Remote Sensing, 1999. 36 (5): 1551- 1565. | |
Cloude S R. 2010. Polarisation: applications in remote sensing. Oxford, USA: Oxford University Press, 178-179. | |
Cui Y , Yamaguchi Y , Yang J , et al. Three-component power decomposition for polarimetric SAR data based on adaptive volume scatter modeling. Remote Sensing, 2012. 4 (6): 1559- 1572.
doi: 10.3390/rs4061559 |
|
Curran P J , Dungan J L , Gholz H L . Seasonal LAI in slash pine estimated with landsat TM. Remote Sensing of Environment, 1992. 39 (1): 3- 13.
doi: 10.1016/0034-4257(92)90136-8 |
|
Dobson M C , Ulaby F T , Letoan T , et al. Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience & Remote Sensing, 1992. 30 (2): 412- 415. | |
Freeman A , Durden S L . A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience & Remote Sensing, 1998. 36 (3): 963- 973. | |
Freeman A . Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Transactions on Geoscience & Remote Sensing, 2007. 45 (8): 2583- 2592. | |
Gama F F , Santos J R D , Mura J C . Eucalyptus biomass and volume estimation using interferometric and polarimetric SAR data. Remote Sensing, 2010. 2 (4): 939- 956.
doi: 10.3390/rs2040939 |
|
Garestier F , Dubois-Fernandez P C , Guyon D , et al. Forest biophysical parameter estimation using L-and P-band polarimetric SAR data. IEEE Transactions on Geoscience & Remote Sensing, 2009. 47 (10): 3379- 3388. | |
Geisser S . A predictive approach to the random effect model. Biometrica, 1974. 61 (1): 101- 107.
doi: 10.1093/biomet/61.1.101 |
|
Goncalves F G , Santos J R , Treuhaft R N . Stem volume of tropical forests from polarimetric radar. International Journal of Remote Sensing, 2011. 32 (2): 503- 522.
doi: 10.1080/01431160903475217 |
|
Harrell P A , Kasischke E S , Bourgeau-Chavez L L , et al. Evaluation of approaches to estimating aboveground biomass in Southern pine forests using SIR-C data. Remote Sensing of Environment, 1997. 59 (2): 223- 233.
doi: 10.1016/S0034-4257(96)00155-1 |
|
Hoekman D H , Quiriones M J . Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon. IEEE Transactions on Geoscience & Remote Sensing, 2002. 38 (2): 685- 696. | |
Ibrahim S . Estimating branchwood biomass of a tropical hill-forest stand. Bioresource Technology, 1995. 52 (1): 53- 57.
doi: 10.1016/0960-8524(94)00003-J |
|
Jawak S D , Bidawe T G , Luis A J . A review on applications of imaging synthetic aperture radar with a special focus on cryospheric studies. Advances in Remote Sensing, 2015. 4 (2): 163- 175.
doi: 10.4236/ars.2015.42014 |
|
Kasischke E S , Christensen N L J , Bourgeau-Chavez L L . Correlating radar backscatter with components of biomass in loblolly pine forests. IEEE Transactions on Geoscience & Remote Sensing, 1995. 33 (3): 643- 659. | |
Kobayashi S , Omura Y , Sangangoie K , et al. Characteristics of decomposition powers of L-band multi-polarimetric SAR in assessing tree growth of industrial plantation forests in the tropics. Remote Sensing, 2012. 4 (10): 3058- 3077.
doi: 10.3390/rs4103058 |
|
Kramer H . Crown development in conifer stands in scotland as influenced by initial spacing and subsequent thinning treatment. Forestry, 1996. 39 (1): 40- 58. | |
Krogager E . New decomposition of the radar target scattering matrix. Electronics Letters, 1990. 26 (18): 1525- 1527.
doi: 10.1049/el:19900979 |
|
Lee J S , Grunes M R , Grandi G D . Polarimetric SAR speckle filtering and its implication for classification. IEEE Transactions on Geoscience & Remote Sensing, 2002. 37 (5): 2363- 2373. | |
Lee J S, Pottier E. 2009. Polarimetric radar imaging: from basics to applications. Boca Raton, USA: CRC Press, 101-175. | |
Mette T , Papathanassiou K , Hajnsek I . Biomass estimation from polarimetric SAR interferometry over heterogeneous forest terrain. Anchorage, AK, USA:Geoscience and Remote Sensing Symposium(IGARSS), IEEE International, 2004. 1, 511- 514. | |
Neumann M , Saatchi S S , Ulander L M H , et al. Assessing performance of L-and P-band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass. IEEE Transactions on Geoscience & Remote Sensing, 2012. 50 (3): 714- 726. | |
Ozanne C M P , Anhuf D , Boulter S L , et al. Biodiversity meets the atmosphere:a global view of forest canopies. Science, 2003. 301 (5630): 183- 186.
doi: 10.1126/science.1084507 |
|
Rowland C S , Balzter H , Dawson T P , et al. Airborne SAR monitoring of tree growth in a coniferous plantation. International Journal of Remote Sensing, 2008. 29 (13): 3873- 3889.
doi: 10.1080/01431160801891796 |
|
Santoro M , Shvidenko A , McCallum I , et al. Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval. Remote Sensing of Environment, 2007. 106 (2): 154- 172.
doi: 10.1016/j.rse.2006.08.004 |
|
Santoro M , Fransson J E S , Eriksson L E B , et al. Signatures of ALOS PALSAR L-band backscatter in Swedish forest. IEEE Transactions on Geoscience & Remote Sensing, 2009. 47 (12): 4001- 4019. | |
Shimada M , Isoguchi O , Tadono T , et al. PALSAR radiometric and geometric calibration. IEEE Transactions on Geoscience & Remote Sensing, 2009. 47 (12): 3915- 3932. | |
Singh G , Yamaguchi Y , Park S E . 4-component scattering power decomposition with phase rotation of coherency matrix. IEEE Transactions on Geoscience & Remote Sensing, 2011. 49 (6): 2251- 2258. | |
Sinha S , Jeganathan C , Sharma L K , et al. A review of radar remote sensing for biomass estimation. International Journal of Environmental Science & Technology, 2015. 12 (5): 1779- 1792. | |
Son Y , Hwang J W , Kim Z S , et al. Allometry and biomass of Korean pine (Pinus koraiensis) in central Koreal. Bioresource Technology, 2001. 78 (3): 251- 255.
doi: 10.1016/S0960-8524(01)00012-8 |
|
Stone M . Cross-validatory choice and assessment of statistical predictions. Journal of Royal Statistical Society, 1974. 36 (1): 111- 133. | |
Tahvanainen T , Forss E . Individual tree models for the crown biomass distribution of Scots pine, Norway spruce and birch in Finland. Forest Ecology & Management, 2008. 255 (3): 455- 467. | |
Toan T L , Beaudoin A , Riom J , et al. Relating forest biomass to SAR data. IEEE Transactions on Geoscience & Remote Sensing, 1992. 30 (2): 403- 411. | |
Wang Y P , Jarvis P G , Benson M L . Two-dimensional needle-area density distribution within the crowns of Pinus radiata. Forest Ecology & Management, 1990. 32 (2): 217- 237. | |
Wold S , Ruhe A , Wold H , et al. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing, 1984. 5 (3): 735- 743. | |
Yamaguchi Y , Moriyama T , Ishido M , et al. Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience & Remote Sensing, 2005. 43 (8): 1699- 1706. | |
Yamaguchi Y , Sato A , Boerner W M , et al. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Transactions on Geoscience & Remote Sensing, 2011. 49 (6): 2251- 2258. |
[1] | 范亚雄,陈尔学,李增元,赵磊,张王菲,金玉栋,蔡丽杰. 基于TanDEM-X相干系数的森林高度估测方法[J]. 林业科学, 2020, 56(6): 35-46. |
[2] | 毛学刚, 竹亮, 刘怡彤, 姚瑶, 范文义. 高空间分辨率影像与SAR数据协同特征面向对象林分类型识别[J]. 林业科学, 2019, 55(9): 92-102. |
[3] | 谷鑫志, 陈尔学, 李增元, 赵磊, 范亚雄, 王雅慧. 多极化星载SAR森林覆盖变化检测方法[J]. 林业科学, 2019, 55(5): 74-84. |
[4] | 毛学刚, 陈文曲, 魏晶昱, 范文义. 分割尺度对面向对象树种分类的影响及评价[J]. 林业科学, 2017, 53(12): 73-83. |
[5] | 李兰, 陈尔学, 李增元, 任冲, 赵磊, 谷鑫志. 森林地上生物量的多基线InSAR层析估测方法[J]. 林业科学, 2017, 53(11): 85-93. |
[6] | 冯琦, 陈尔学, 李增元, 李兰, 赵磊. 基于机载P-波段全极化SAR数据的复杂地形森林地上生物量估测方法[J]. 林业科学, 2016, 52(3): 10-22. |
[7] | 王馨爽, 陈尔学, 李增元, 姚顽强, 赵磊. 多时相双极化SAR影像林地类型分类方法[J]. 林业科学, 2014, 50(3): 83-91. |
[8] | 李文梅, 陈尔学, 李增元, 赵磊. 森林地上生物量的极化干涉SAR相干层析估测方法[J]. 林业科学, 2014, 50(2): 70-77. |
[9] | 杨群芳;王慧;李庆. 3种虫道真菌对光滑足距小蠹生长发育和繁殖的影响[J]. 林业科学, 2011, 47(4): 178-181. |
[10] | 陈尔学 李增元 庞勇 田昕. 基于极化合成孔径雷达干涉测量的平均树高提取技术[J]. 林业科学, 2007, 43(4): 66-70. |
[11] | 晁龙军 曾大鹏 孙福在 赵廷昌 刘春静. 引起杨树湿心材的一种病原真菌——Fusarium proliferatum(Matsushima)Nirenberg[J]. , 1998, 34(5): 61-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||