林业科学 ›› 2025, Vol. 61 ›› Issue (6): 75-84.doi: 10.11707/j.1001-7488.LYKX20240089
胡建文1,2,刘常富1,3,4,*(),勾蒙蒙1,3,4,雷蕾1,3,4,陈会玲1,张佳佳1,朱粟锋1,斛如媛1,肖文发1,3,4
收稿日期:
2024-02-14
出版日期:
2025-06-10
发布日期:
2025-06-26
通讯作者:
刘常富
E-mail:liucf898@163.com
基金资助:
Jianwen Hu1,2,Changfu Liu1,3,4,*(),Mengmeng Gou1,3,4,Lei Lei1,3,4,Huiling Chen1,Jiajia Zhang1,Sufeng Zhu1,Ruyuan Hu1,Wenfa Xiao1,3,4
Received:
2024-02-14
Online:
2025-06-10
Published:
2025-06-26
Contact:
Changfu Liu
E-mail:liucf898@163.com
摘要:
目的: 分析不同林龄马尾松人工林土壤有机碳(SOC)及其组分碳库变化特征和影响因素,为厘清人工林SOC固存机制提供参考。方法: 以亚热带马尾松人工幼龄林(6 a)、中龄林(13 a)、近熟林(29 a)、成熟林(38 a)和过熟林(57 a)为对象,探索0~10 cm土层SOC及其组分的林龄梯度规律,分析SOC组分变化与林木特征、土壤化学性质和微生物生物量等指标的关系,探讨人工林SOC固存机制。结果: SOC含量在成熟林[(21.90±1.07) g·kg?1]显著(P<0.05)高于幼龄林[(15.35±0.37) g·kg?1]和中龄林[(13.22±0.83)g·kg?1]。成熟林矿物结合组分的干质量分数(72.98%)显著(P<0.05)低于幼龄林、中龄林、近熟林和过熟林,而轻颗粒组分的干质量分数(26.08%)和重颗粒组分的干质量分数(0.93%)显著(P<0.05)高于幼龄林和中龄林(P<0.05)。成熟林矿物结合组分有机碳含量[(21.90±1.07) g·kg?1]显著(P<0.05)高于幼龄林、中龄林、近熟林和过熟林,重颗粒组分有机碳含量[(21.00±1.76)g·kg?1]显著(P<0.05)低于过熟林[(55.81±9.89 g·kg?1],轻颗粒组分有机碳含量[(286.99±3.69)g·kg?1]显著(P<0.05)低于中龄林[(335.68±12.45) g·kg?1]。所有龄组矿物结合组分有机碳质量分数均大于50%,主导SOC积累。成熟林矿物结合组分有机碳质量分数(66.78%)显著(P<0.05)低于幼龄林、中龄林、近熟林和过熟林。相关性分析显示,SOC含量与轻颗粒组分的干质量分数、重颗粒组分的干质量分数和矿物结合组分有机碳含量显著(P<0.05)正相关,与轻颗粒组分有机碳含量显著(P<0.05)负相关。逐步回归分析显示,地表凋落物、轻颗粒组分的干质量分数、重颗粒组分的干质量分数和矿物结合组分有机碳含量驱动SOC积累(R2=0.98)。偏最小二乘模型显示,林分发育过程中矿物结合组分(包含矿物结合组分有机碳含量和碳磷比)对SOC积累总效应最高(0.91)。结论: 马尾松人工林林分发育过程中矿物结合有机碳主导SOC积累,且成熟林SOC的高效固存受地表凋落物和SOC组分的共同调控。
中图分类号:
胡建文,刘常富,勾蒙蒙,雷蕾,陈会玲,张佳佳,朱粟锋,斛如媛,肖文发. 马尾松人工林土壤有机碳及其组分对林龄的响应及驱动因素[J]. 林业科学, 2025, 61(6): 75-84.
Jianwen Hu,Changfu Liu,Mengmeng Gou,Lei Lei,Huiling Chen,Jiajia Zhang,Sufeng Zhu,Ruyuan Hu,Wenfa Xiao. Response and Driving Factors of Soil Organic Carbon and Its Fractions to Stand Age in Pinus massoniana Plantation[J]. Scientia Silvae Sinicae, 2025, 61(6): 75-84.
表1
不同林龄马尾松人工林样地信息①"
样地信息 | 林龄 Stand age /a | ||||
Site information | 6 | 13 | 29 | 38 | 57 |
海拔 Altitude/ m | 98.60 ± 8.70 | 113.10 ± 15.60 | 97.40 ± 4.40 | 161.50 ± 3.60 | 166.40 ± 4.00 |
坡度 Slope/(°) | 5 | 7 | 5 | 5 | 15 |
DBH / cm | 7.20 ± 0.10C | 10.76 ± 0.29C | 23.63 ± 1.19B | 30.08 ± 1.51A | 32.63 ± 1.87A |
树高 Tree height / m | 6.7 ± 0.1D | 8.2 ± 0.1D | 12.2 ± 0.4C | 15.4 ± 0.2B | 17.1 ± 0.6A |
林分密度 Stand density /( tree·hm?2 ) | 625 ± 80B | 525 ± 88B | 358 ± 46B | ||
灌木生物量 Shrub biomass /(g·m?2 ) | 0.00 ± 0.00A | 151.67 ± 47.49A | 122.07 ± 25.92A | 489.86 ± 373.18A | |
草本生物量 Herbage biomass /(g·m?2 ) | 30.23 ± 10.20A | 10.71 ± 8.43A | 1.66 ± 1.66A | 48.14 ± 27.16A | 74.90 ± 23.49A |
地表凋落物现存量 Forest floor litter biomass / (g·m?2) | 599.77 ± 95.67B | 752.91 ± 80.21AB | 907.31 ± 73.31AB | 741.97 ± 83.67AB | |
细根生物量 Fine root biomass / (g·m?2) | 15.10 ± 0.94B | 27.60 ± 2.95AB | 41.56 ± 7.05AB | 56.74 ± 15.85A | 56.74 ± 6.69A |
土壤密度 Soil density / (g·cm?3 ) | 1.26 ± 0.07A | 1.31 ± 0.02A | 1.36 ± 0.03A | 1.19 ± 0.06A | 1.32 ± 0.07A |
黏粒含量 Clay content (<2 μm)(%) | 22.90 ± 3.13AB | 21.72 ± 0.27AB | 21.53 ± 1.45B | 29.12 ± 0.84A | 21.52 ± 0.63B |
粉粒含量 Silt content (2 ~ 20 μm)(% ) | 66.17 ± 2.12A | 65.44 ± 1.01AB | 67.23 ± 1.69A | 58.94 ± 1.25B | 68.71 ± 1.37A |
砂粒含量 Sand content ( >20 μm)(% ) | 10.92 ± 1.10A | 12.84 ± 1.27A | 11.25 ± 0.41A | 11.94 ± 0.73A | 9.77 ± 1.66A |
表2
不同林龄马尾松人工林土壤生物和化学性质①"
组分 Fractions | 指标 Indicators | 林龄Stand age/a | ||||
6 | 13 | 29 | 38 | 57 | ||
全土 Bulk soil | 土壤有机碳含量 Soil organic carbon content / (g·kg?1) | 15.35±0.37BC | 13.22±0.83C | 18.28±1.05AB | 21.90±1.07A | 19.86±1.51AB |
全氮含量 Total nitrogen content / (g·kg?1) | 1.62±0.05BC | 1.34±0.07C | 1.64±0.09BC | 2.06±0.07A | 1.92±0.08AB | |
全磷含量 Total phosphorus content / (g·kg?1) | 0.23±0.06A | 0.33±0.01A | 0.28±0.03A | 0.29±0.01A | 0.38±0.03A | |
碳氮比 Ratio of carbon to nitrogen | 9.48±0.16B | 9.84±0.12B | 11.14±0.15A | 10.64±0.28AB | 10.31±0.45AB | |
碳磷比 Ratio of carbon to phosphorus | 84.95±32.5A | 40.63±3.35A | 68.64±12.84A | 74.91±3.71A | 53.32±6.02A | |
pH | 6.21±0.03A | 5.37±0.04B | 5.44±0.23B | 4.79±0.04B | 5.11±0.24B | |
细菌生物量 Bacterial biomass / (nmol·g?1) | 5.57±0.61A | 5.41±0.22A | 6.32±0.01A | 6.5±0.65A | 7.05±0.68A | |
真菌生物量 Fungal biomass /(nmol·g?1) | 0.60±0.06A | 0.46±0.01A | 0.55±0.02A | 0.42±0.04A | 0.48±0.05A | |
真菌生物量/细菌生物量 Ratio of fungal to bacterial biomass | 0.11±0.00A | 0.09±0.00B | 0.09±0.00B | 0.07±0.00C | 0.07±0.00C | |
矿物结合组分 Mineral-associated fraction | 全氮含量 Total nitrogen content / (g·kg?1) | 1.34±0.01BC | 1.08±0.06C | 1.35±0.08BC | 1.88±0.08A | 1.55±0.13AB |
全磷含量 Total phosphorus content / (g·kg?1) | 0.27±0.02A | 0.16±0.01B | 0.18±0.02B | 0.20±0.00B | 0.17±0.01B | |
碳氮比 Ratio of carbon to nitrogen | 10.53±0.16B | 10.95±0.19AB | 11.07±0.04AB | 11.87±0.42A | 11.13±0.16AB | |
碳磷比Ratio of carbon to phosphorus | 53.63±4.50D | 72.76±6.05CD | 81.60±4.12BC | 112.78±1.93A | 102.05±8.18AB | |
重颗粒组分 Heavy particulate fraction | 全氮含量 Total nitrogen content / (g·kg?1) | 2.12±0.12AB | 1.81±0.14B | 2.05±0.23AB | 1.26±0.14B | 3.09±0.41A |
全磷含量 Total phosphorus content / (g·kg?1) | 0.33±0.03A | 0.35±0.01A | 0.33±0.01A | 0.19±0.00B | 0.22±0.01B | |
碳氮比 Ratio of carbon to nitrogen | 18.43±0.91A | 19.69±0.72A | 18.75±0.69A | 16.70±0.41A | 17.89±0.75A | |
碳磷比 Ratio of carbon to phosphorus | 124.98±25.42B | 102.84±6.55B | 114.33±4.98B | 109.28±11.33B | 249.52±45.53A | |
轻颗粒组分 Light particulate fraction | 全氮含量 Total nitrogen content / (g·kg?1) | 9.68±0.79A | 10.01±0.74A | 8.03±0.35A | 9.10±0.23A | 8.17±0.17A |
碳氮比 Ratio of carbon to nitrogen | 32.72±2.51A | 33.75±1.67A | 36.04±0.76A | 31.58±0.70A | 34.10±1.25A |
表3
不同林龄马尾松人工林土壤有机碳组分的干质量、干质量分数、有机碳含量和有机碳干质量分数①"
组分Fraction | 林龄 Stand age/a | 干质量 Dry mass / g | 干质量分数 Dry mass fraction (%) | 有机碳含量 Organic carbon content / (g·kg?1) | 有机碳干质量分数 Organic carbon dry mass fraction (%) |
矿物结合组分 Mineral-associated fraction | 6 | 28.00±0.33 A | 93.33±1.09 A | 14.14±0.30 BC | 80.15±1.83 A |
13 | 27.80±0.10 A | 92.67±0.32 A | 11.82±0.69 C | 74.86±0.84 A | |
29 | 27.89±0.31 A | 92.97±1.03 A | 14.89±0.86 BC | 75.20±1.56 A | |
38 | 21.90±0.75 B | 72.98±2.51 B | 22.29±0.38 A | 66.78±2.35 B | |
57 | 27.99±0.09 A | 93.29±0.29 A | 17.27±1.59 B | 75.69±0.95 A | |
重颗粒组分 Heavy particle fraction | 6 | 1.92±0.32 B | 6.41±1.06 B | 39.34±4.30 AB | 14.75±1.00 B |
13 | 2.09±0.10 B | 6.96±0.32 B | 35.46±2.53 AB | 16.84±0.60 AB | |
29 | 1.88±0.30 B | 6.27±1.00 B | 38.15±3.00 AB | 12.92±1.85 B | |
38 | 7.82±0.72 A | 26.08±2.41 A | 21.00±1.76 B | 22.20±1.08 A | |
57 | 1.83±0.07 B | 6.08±0.23 B | 55.81±9.89 A | 15.70±1.24 B | |
轻颗粒组分 Light particle fraction | 6 | 0.08±0.01 C | 0.27±0.04 C | 313.74±13.87 AB | 5.11±0.90 B |
13 | 0.11±0 BC | 0.36±0.01 BC | 335.68±12.45 A | 8.31±0.25 AB | |
29 | 0.23±0.04 AB | 0.76±0.13 AB | 288.91±8.39 AB | 11.88±1.93 A | |
38 | 0.28±0.03 A | 0.93±0.11 A | 286.99±3.69 B | 11.01±1.30 AB | |
57 | 0.19±0.03 ABC | 0.63±0.10 ABC | 278.30±8.76 B | 8.61±2.01 AB |
表4
马尾松人工林土壤有机碳组分性质间的相关性①"
因子Factors | SOC | MFLPF | MFHPF | MFMAF | LPOC | HPOC | MAOC |
SOC | 1.00 | 0.67** | 0.56* | ?0.57* | ?0.72** | 0.07 | 0.93** |
MFLPF | 0.67** | 1.00 | 0.64** | ?0.66** | ?0.55* | ?0.43 | 0.63* |
MFHPF | 0.56* | 0.64** | 1.00 | ?0.99** | ?0.24 | ?0.66** | 0.79** |
MFMAF | ?0.57* | ?0.66** | ?0.99** | 1.00 | ?0.25 | 0.66** | ?0.80** |
LPOC | ?0.72** | ?0.55* | ?0.24 | ?0.25 | 1.00 | ?0.14 | ?0.60* |
HPOC | 0.07 | ?0.43 | ?0.66** | 0.66** | ?0.14 | 1.00 | ?0.16 |
MAOC | 0.93** | 0.63* | 0.79** | ?0.80** | ?0.60* | ?0.16 | 1.00 |
表5
马尾松人工林土壤有机碳及其组分碳含量变化的驱动因子①"
逐步回归方程 Stepwise regression equations | 决定系数 Determination coefficient (R2) | 显著性 Significance (P) |
SOC = 0.002FFL + 6.152MFLPF ? 0.273MFHPF + 1.070MAOC + 0.509 | R2=0.98 | P<0.05 |
MAOC = 0.235MFHPF + 0.085MC/P + 6.428 | R2=0.77 | P<0.01 |
HPOC = ? 0.714MFHPF + 0.151HC/P + 24.466 | R2=0.93 | P<0.01 |
LPOC = ? 20.011BB + 424.161 | R2=0.52 | P<0.01 |
图1
马尾松人工林土壤有机碳积累路径(a)及各潜变量对有机碳积累的总效应(b) 图a括号中的内容是构成模型潜变量的观测变量,实线表示正因果关系(P<0.05),箭头上的数字表示显著的标准化路径系数,R2 表示独立变量的解释强。The contents in parentheses in figure a are the observed variables that constitute the latent variables of the model, the solid arrowed-lines indicate positive flows of causality (P<0.05), numbers on the arrows indicate the significant standardized path coefficients, R2 represented the explanatory strength of independent variables. SA:林龄Stand age( a);FFL&MG:凋落物现存量和微生物生长Forest floor litter and microbial growth;BB:细菌生物量 Bacterial biomass(nmol·g?1);FFL:地表凋落物 Forest floor litter (g·m?2);LPF:轻颗粒组分Light particulate fraction;MFLPF :轻颗粒组分的干质量分数 Dry mass fraction of light particle fraction(%);LPOC:轻颗粒组分有机碳含量的负数The negative value of light particulate fraction organic carbon (g·kg?1);HPF:重颗粒组分Heavy particulate fraction;MFHPF:重颗粒组分的干质量分数 Dry mass fraction of heavy particulate fraction(%);MAF:矿物结合组分 Mineral-associated fraction;MAOC:矿物结合组分有机碳含量 Mineral-associated fraction organic carbon content (g·kg?1);MC/P:矿物结合组分碳磷比 Carbon-phosphorus ratio of mineral-associated fraction;SOC:土壤有机碳含量Soil organic carbon content (g·kg?1)。"
陈 甜, 元方慧, 张琳梅, 等. 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响. 应用生态学报, 2022, 33 (10): 2602- 2610. | |
Chen T, Yuan F H, Zhang L M, et al. Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect. Chinese Journal of Applied Ecology, 2022, 33 (10): 2602- 2610. | |
崔宁洁, 刘小兵, 张丹桔, 等. 不同林龄马尾松(Pinus massoniana)人工林碳氮磷分配格局及化学计量特征. 生态环境学报, 2014, 23 (2): 188- 195.
doi: 10.3969/j.issn.1674-5906.2014.02.002 |
|
Cui N J, Liu X B, Zhang D J, et al. The distribution pattern of carbon, nitrogen and phosphorus and the stoichiometry characteristics of Pinus massoniana plantation in different ages. Ecology and Environmental Sciences, 2014, 23 (2): 188- 195.
doi: 10.3969/j.issn.1674-5906.2014.02.002 |
|
何 斌, 李 青, 冯 图, 等. 不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系. 南京林业大学学报(自然科学版), 2020, 44 (2): 181- 190. | |
He B, Li Q, Feng T, et al. Variation in leaf functional traits of different-aged Pinus massoniana communities and relationships with soil nutrients. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44 (2): 181- 190. | |
何亚婷, 何友均, 王 鹏, 等. 不同经营模式对蒙古栎林土壤有机碳组分的长效性影响. 生态环境学报, 2023, 32 (1): 11- 17. | |
He Y T, He Y J, Wang P, et al. Effects of different forest management regimes on soil organic carbon in aggregate fractions in natural secondary Quercus mongolica forests. Ecology and Environmental Sciences, 2023, 32 (1): 11- 17. | |
胡建文, 刘常富, 勾蒙蒙, 等. 林龄对马尾松人工林微生物残体碳积累的影响机制. 应用生态学报, 2024, 35 (1): 153- 160. | |
Hu J W, Liu C F, Gou M M, et al. Influencing mechanism of stand age to the accumulation of microbial residues carbon in the Pinus massoniana plantations. Chinese Journal of Applied Ecology, 2024, 35 (1): 153- 160. | |
黄腾华, 王军锋, 宋恋环, 等. 马尾松木材性质特点及改性研究现状. 世界林业研究, 2023, 36 (6): 45- 50. | |
Huang T H, Wang J F, Song L H, et al. Research status of properties and modified of masson pine wood. World Forestry Research, 2023, 36 (6): 45- 50. | |
雷丽群, 卢立华, 农 友, 等. 不同林龄马尾松人工林土壤碳氮磷生态化学计量特征. 林业科学研究, 2017, 30 (6): 954- 960. | |
Lei L Q, Lu L H, Nong Y, et al. Stoichiometry characterization of soil C, N and P of Pinus massoniana plantations at different age stages. Forest Research, 2017, 30 (6): 954- 960. | |
李 奇, 朱建华, 冯 源, 等 2016. 中国主要人工林碳储量与固碳能力. 西北林学院学报, 31(4): 1−6. | |
Li Q, Zhu J H, Feng Y, et al. 2016. Carbon stocks and carbon sequestration capacity of the main plantations in China. Journal of Northwest Forestry University, 31(4): 1−6. [in Chinese] | |
李学垣. 1997. 土壤化学及实验指导. 北京: 中国农业出版社. | |
Li X Y. 1997. Soil chemistry and experimental guidance. Beijing: China Agriculture Press. [in Chinese] | |
李玉凤, 马姜明, 何静桦, 等. 广西不同林龄马尾松人工林土壤碳储量动态变化. 广西科学, 2020, 27 (6): 638- 645. | |
Li Y F, Ma J M, He J H, et al. Dynamic changes of soil carbon storage of Pinus massoniana plantations at different stand ages in Guangxi. Guangxi Sciences, 2020, 27 (6): 638- 645. | |
彭思瑞, 张慧玲, 孙兆林, 等. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响. 植物生态学报, 2024, 48 (8): 1078- 1088.
doi: 10.17521/cjpe.2023.0291 |
|
Peng S R, Zhang H L, Sun Z L, et al. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest. Chinese Journal of Plant Ecology, 2024, 48 (8): 1078- 1088.
doi: 10.17521/cjpe.2023.0291 |
|
赵林林, 吴志祥, 孙 瑞, 等. 海南琼中不同林龄橡胶林土壤有机碳组分及其影响因素. 云南农业大学学报 (自然科学), 2023, 38 (5): 886- 893. | |
Zhao L L, Wu Z X, Sun R, et al. Soil organic carbon components and influencing factors of rubber plantations of different ages in Qiongzhong, Hainan. Journal of Yunnan Agricultural University (Natural Science), 2023, 38 (5): 886- 893. | |
周 蕾, 王绍强, 周 涛, 等. 1901—2010年中国森林碳收支动态: 林龄的重要性. 科学通报, 2016, 61 (18): 2064- 2074. | |
Zhou L, Wang S Q, Zhou T, et al. Carbon dynamics of China’s forests during 1901−2010: the importance of forest age. Science China Press, 2016, 61 (18): 2064- 2074. | |
Angst G, Mueller K E, Castellano M J, et al. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nature Communications, 2023, 14 (1): 2967.
doi: 10.1038/s41467-023-38700-5 |
|
Chen A M, Wang Z G, Lin Y M, et al. Temporal variation of soil organic carbon pools along a chronosequence of reforested land in Southwest China. Catena, 2020, 194, 104650.
doi: 10.1016/j.catena.2020.104650 |
|
Coonan E C, Kirkby C A, Kirkegaard J A, et al. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutrient Cycling in Agroecosystems, 2020, 117 (3): 273- 298.
doi: 10.1007/s10705-020-10076-8 |
|
Cotrufo M F, Haddix M L, Kroeger M E, et al. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 2022, 168, 108648.
doi: 10.1016/j.soilbio.2022.108648 |
|
Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8 (10): 776- 779.
doi: 10.1038/ngeo2520 |
|
Cotrufo M F, Wallenstein M D, Boot C M, et al. 2013. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4): 988−995. | |
Fang J Y, Yu G R, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences, 2018, 115 (16): 4015- 4020.
doi: 10.1073/pnas.1700304115 |
|
Fang Y Y, Singh B P, Cowie A, et al. Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions. Geoderma, 2019, 354, 113883.
doi: 10.1016/j.geoderma.2019.113883 |
|
Feng X J, Wang S M. Plant influences on soil microbial carbon pump efficiency. Global Change Biology, 2023, 29 (14): 3854- 3856.
doi: 10.1111/gcb.16728 |
|
Gao D C, Bai E, Wang S Y, et al. Three-dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale. Global Change Biology, 2022, 28 (22): 6728- 6740.
doi: 10.1111/gcb.16374 |
|
Jia Y F, Zhai G Q, Zhu S S, et al. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology and Biochemistry, 2021, 161, 108375.
doi: 10.1016/j.soilbio.2021.108375 |
|
Jian Z J, Ni Y Y, Lei L, et al. Phosphorus is the key soil indicator controlling productivity in planted masson pine forests across subtropical China. Science of The Total Environment, 2022, 822, 153525.
doi: 10.1016/j.scitotenv.2022.153525 |
|
Justine M F, Yang W Q, Wu F Z, et al. Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests, 2015, 6 (12): 3665- 3682. | |
Justine M F, Yang W Q, Wu F Z, et al. Dynamics of biomass and carbon sequestration across a chronosequence of masson pine plantations. Journal of Geophysical Research: Biogeosciences, 2017, 122 (3): 578- 591.
doi: 10.1002/2016JG003619 |
|
Keesstra S D, Bouma J, Wallinga J, et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2016, 2 (2): 111- 128.
doi: 10.5194/soil-2-111-2016 |
|
Lajtha K, Mayzelle M. Effects of detrital inputs and roots on carbon saturation deficit of a temperate forest soil. Soil Science Society of America Journal, 2014, 78 (S1): 576- 583. | |
Lavallee J M, Soong J L, Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26 (1): 261- 273.
doi: 10.1111/gcb.14859 |
|
Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature, 2015, 528 (7580): 60- 68.
doi: 10.1038/nature16069 |
|
Luan J W, Liu S R, Zhu X L, et al. Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests. Soil Biology and Biochemistry, 2012, 44 (1): 143- 150.
doi: 10.1016/j.soilbio.2011.08.012 |
|
Mujuru L, Gotora T, Velthorst E J, et al. Soil carbon and nitrogen sequestration over an age sequence of Pinus patula plantations in Zimbabwean Eastern Highlands. Forest Ecology and Management, 2014, 313, 254- 265.
doi: 10.1016/j.foreco.2013.11.024 |
|
Ni Y Y, Jian Z J, Zeng L X, et al. Climate, soil nutrients, and stand characteristics jointly determine large-scale patterns of biomass growth rates and allocation in Pinus massoniana plantations. Forest Ecology and Management, 2022, 504, 119839.
doi: 10.1016/j.foreco.2021.119839 |
|
Pregitzer K S, Euskirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology, 2004, 10 (12): 2052- 2077.
doi: 10.1111/j.1365-2486.2004.00866.x |
|
Ridgeway J R, Morrissey E M, Brzostek E R. Plant litter traits control microbial decomposition and drive soil carbon stabilization. Soil Biology and Biochemistry, 2022, 175, 108857.
doi: 10.1016/j.soilbio.2022.108857 |
|
Rumpel C, Amiraslani F, Koutika L S, et al. Put more carbon in soils to meet Paris climate pledges. Nature, 2018, 564 (7734): 32- 34.
doi: 10.1038/d41586-018-07587-4 |
|
Shao S, Zhao Y, Zhang W, et al. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biology and Biochemistry, 2017, 114, 114- 120.
doi: 10.1016/j.soilbio.2017.07.007 |
|
Shen Y F, Lei L, Xiao W F, et al. Soil microbial residue characteristics in Pinus massoniana lamb. Plantations. Environmental Research, 2023, 231, 116081.
doi: 10.1016/j.envres.2023.116081 |
|
Sokol N W, Whalen E D, Jilling A, et al. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: a trait-based perspective. Functional Ecology, 2022, 36 (6): 1411- 1429.
doi: 10.1111/1365-2435.14040 |
|
Tang X L, Zhao X, Bai Y F, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 2018, 115 (16): 4021- 4026.
doi: 10.1073/pnas.1700291115 |
|
Wang C Q, Xue L, Jiao R Z. Soil organic carbon fractions, C-cycling associated hydrolytic enzymes, and microbial carbon metabolism vary with stand age in Cunninghamia lanceolate (Lamb. ) Hook plantations. Forest Ecology and Management, 2021, 482, 118887.
doi: 10.1016/j.foreco.2020.118887 |
|
Witzgall K, Vidal A, Schubert D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 2021, 12 (1): 4115..
doi: 10.1038/s41467-021-24192-8 |
|
Xiong X, Zhou G Y, Zhang D Q. Soil organic carbon accumulation modes between pioneer and old‐growth forest ecosystems. Journal of Applied Ecology, 2020, 57 (12): 2419- 2428.
doi: 10.1111/1365-2664.13747 |
|
Yu F, Zhang W L, Hou X, et al. How nutrient loads influence microbial-derived carbon accumulation in wetlands: a new insight from microbial metabolic investment strategies. Environmental Research, 2023, 217, 114981.
doi: 10.1016/j.envres.2022.114981 |
|
Zhang Q F, Feng J G, Li J, et al. A distinct sensitivity to the priming effect between labile and stable soil organic carbon. New Phytologist, 2023a, 237 (1): 88- 99.
doi: 10.1111/nph.18458 |
|
Zhang Y X, Tang Z X, You Y M, et al. Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest. Soil Biology and Biochemistry, 2023b, 180, 109017.
doi: 10.1016/j.soilbio.2023.109017 |
[1] | 张佳佳,肖文发,雷蕾,杨鑫,胡建文,杨洪炳,廖倚凌,曾立雄. 柑橘园覆盖光叶苕子促进土壤颗粒有机碳净积累[J]. 林业科学, 2025, 61(2): 74-84. |
[2] | 张孝琰,倪晓凤,蔡琼,吉成均. 塞罕坝不同林龄华北落叶松人工林林下植物叶解剖特征及其氮添加响应[J]. 林业科学, 2025, 61(1): 37-46. |
[3] | 杨阳,王宝荣,孙慧,周媛媛,乔江波,宋怡,张萍萍,李自民,王云强,安韶山. 地球关键带土壤微生物介导有机碳转化研究进展[J]. 林业科学, 2024, 60(7): 165-174. |
[4] | 白雪娟,翟国庆,刘敬泽. 13C稳定同位素在陆地生态系统植物-微生物-土壤碳循环中的应用[J]. 林业科学, 2024, 60(7): 175-190. |
[5] | 沈琛琛,肖文发,朱建华,曾立雄,陈吉臻,黄志霖. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J]. 林业科学, 2024, 60(3): 65-77. |
[6] | 韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24. |
[7] | 刘相荣,孙启武,厚凌宇,庞忠义,张琰琳,丁昌俊. 松辽平原杨树人工林土壤微生物群落结构及其功能多样性的林龄差异[J]. 林业科学, 2024, 60(11): 25-36. |
[8] | 李晓,贾淑娴,席颖青,杨柳明,刘小飞. 凋落物添加与去除对米槠天然林土壤微生物残体碳的影响[J]. 林业科学, 2024, 60(10): 12-20. |
[9] | 韩新生,刘广全,许浩,董立国,郭永忠,安钰,万海霞,王月玲. 宁夏黄土区典型坡面表层土壤有机碳含量的空间变化特征及尺度效应[J]. 林业科学, 2024, 60(1): 19-31. |
[10] | 周小成, 黄婷婷, 李媛, 肖祥希, 朱洪如, 陈芸芝, 冯芝淸. 结合遥感林龄因子的亚热带森林蓄积量估算方法[J]. 林业科学, 2023, 59(4): 88-99. |
[11] | 游巍斌,李颖,周艳,何东进. 武夷山国家公园马尾松林改为茶园后影响表层土壤碳含量的林缘效应[J]. 林业科学, 2023, 59(10): 41-49. |
[12] | 罗斯生,罗碧珍,魏书精,胡海清,李小川,王振师,周宇飞,宋兆,钟映霞. 中度火灾一年后马尾松林土壤碳库特征[J]. 林业科学, 2022, 58(9): 25-35. |
[13] | 陈嘉琪,赵光宇,李仰龙,董玉红,厚凌宇,焦如珍. 杉木人工林土壤磷素形态及含量的林龄变化[J]. 林业科学, 2022, 58(5): 10-17. |
[14] | 付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测[J]. 林业科学, 2022, 58(2): 32-41. |
[15] | 王淑真,梁晶晶,包明琢,潘菲,周垂帆. 不同林龄杉木林土壤磷形态与解磷菌变化[J]. 林业科学, 2022, 58(2): 58-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||