林业科学 ›› 2024, Vol. 60 ›› Issue (7): 165-174.doi: 10.11707/j.1001-7488.LYKX20230281
杨阳1,2,王宝荣3,孙慧1,2,周媛媛1,2,乔江波3,宋怡1,2,张萍萍1,2,李自民1,2,王云强1,2,*(),安韶山3
收稿日期:
2023-07-02
出版日期:
2024-07-25
发布日期:
2024-08-19
通讯作者:
王云强
E-mail:wangyq@ieecas.cn
基金资助:
Yang Yang1,2,Baorong Wang3,Hui Sun1,2,Yuanyuan Zhou1,2,Jiangbo Qiao3,Yi Song1,2,Pingping Zhang1,2,Zimin Li1,2,Yunqiang Wang1,2,*(),Shaoshan An3
Received:
2023-07-02
Online:
2024-07-25
Published:
2024-08-19
Contact:
Yunqiang Wang
E-mail:wangyq@ieecas.cn
摘要:
地球关键带是大气圈、生物圈、土壤圈、水圈、岩石圈高度交汇和相互作用的地球表层复杂系统,也是联结气候系统-地表过程-地球深部过程物质和能量循环的重要桥梁,微生物在地球关键带碳循环中扮演着重要角色,认识地球关键带结构与功能,阐明关键带土壤微生物介导的碳转化过程是当前关键带研究热点之一。本研究首先介绍地球关键带的结构与范畴,以及土壤微生物结构特征、微生物驱动的土壤碳循环研究进展;然后指出当前工作仍停留在地球关键带的基本结构认识和土壤碳储量特征描述上,建议从关键带整体框架出发,沿垂直方向综合考虑从植物冠层到基岩之间的碳循环过程,联合使用多种技术方法,将短期高频次观测和长期定位观测相结合,重视长时间尺度下土壤有机碳对全球变化和人类活动的响应及反馈机制,特别关注土壤碳在关键带各界面的微生物驱动过程及其迁移转化规律;最后在考虑地球大数据科学工程和全球碳排放路径等时代因素的背景下,开展大气、植被、土壤、微生物、基岩、地下水等多界面、多过程、多时间尺度的同步观测和系统性研究,为地球关键带土壤碳循环模型优化及气候变化预测提供科学依据,也为我国“双碳”目标提供理论支撑。
中图分类号:
杨阳,王宝荣,孙慧,周媛媛,乔江波,宋怡,张萍萍,李自民,王云强,安韶山. 地球关键带土壤微生物介导有机碳转化研究进展[J]. 林业科学, 2024, 60(7): 165-174.
Yang Yang,Baorong Wang,Hui Sun,Yuanyuan Zhou,Jiangbo Qiao,Yi Song,Pingping Zhang,Zimin Li,Yunqiang Wang,Shaoshan An. Review of Soil Microbes Mediating Organic Carbon Conversion Process of the Earth Critical Zone[J]. Scientia Silvae Sinicae, 2024, 60(7): 165-174.
安培浚, 张志强, 王立伟. 地球关键带的研究进展. 地球科学进展, 2016, 31 (12): 1228- 1234. | |
An P J, Zhang Z Q, Wang L W. Review of earth critical zone research. Advances in Earth Science, 2016, 31 (12): 1228- 1234. | |
褚海燕, 王艳芬, 时 玉, 等. 土壤微生物生物地理学研究现状与发展态势. 中国科学院院刊, 2017, 32 (6): 585- 592. | |
Chu H Y, Wang Y F, Shi Y, et al. Current status and development trend of soil microbial biogeography. Bulletin of the Chinese Academy of Sciences, 2017, 32 (6): 585- 592. | |
冯晓娟, 王依云, 刘 婷, 等. 生物标志物及其在生态系统研究中的应用. 植物生态学报, 2020, 44 (4): 384- 394.
doi: 10.17521/cjpe.2019.0139 |
|
Feng X J, Wang Y Y, Liu T, et al. Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 2020, 44 (4): 384- 394.
doi: 10.17521/cjpe.2019.0139 |
|
贺纪正, 郭良栋. 微生物多样性研究进展与展望. 生物多样性, 2013, 21 (4): 391- 392. | |
He J Z, Guo L D. Progress in the studies of microbial diversity. Biodiversity Science, 2013, 21 (4): 391- 392. | |
贺纪正, 王军涛. 土壤微生物群落构建理论与时空演变特征. 生态学报, 2015, 35 (20): 6575- 6583. | |
He J Z, Wang J T. Mechanisms of community organization and spatiotemporal patterns of soil microbial communities. Acta Ecologica Sinica, 2015, 35 (20): 6575- 6583. | |
贺纪正, 袁超磊, 沈菊培, 等. 土壤宏基因组学研究方法与进展. 土壤学报, 2012, 49 (1): 155- 164.
doi: 10.11766/trxb201103180094 |
|
He J Z, Yuan C L, Shen J P, et al. Methods for and progress in research advances on soil metagenomics. Acta Pedologica Sinica, 2012, 49 (1): 155- 164.
doi: 10.11766/trxb201103180094 |
|
金 钊. 走进新时代的黄土高原生态恢复与生态治理. 地球环境学报, 2019, 10 (3): 316- 322. | |
Jin Z. Ecological restoration and management of Loess Plateau in the new era. Journal of Earth Environment, 2019, 10 (3): 316- 322. | |
李妙宇, 上官周平, 邓 蕾. 黄土高原地区生态系统碳储量空间分布及其影响因素. 生态学报, 2021, 41 (17): 6786- 6799. | |
Li M Y, Shangguan Z P, Deng L. Spatial distribution of carbon storage in the terrestrial ecosystem and its influencing factors on the Loess Plateau. Acta Ecologica Sinica, 2021, 41 (17): 6786- 6799. | |
李小雁, 马育军. 地球关键带科学与水文土壤学研究进展. 北京师范大学学报(自然科学版), 2016, 52 (6): 731- 737. | |
Li X Y, Ma Y J. Advances in earth’s critical zone science and hydrology. Journal of Beijing Normal University(Natural Science), 2016, 52 (6): 731- 737. | |
李小雁, 马育军. 水文土壤学: 一门新兴的交叉学科. 科技导报, 2008, 26 (9): 78- 82. | |
Li X Y, Ma Y J. Hydropedology: a new interdisciplinary field related to soil science and hydrology. Science and Technology Review, 2008, 26 (9): 78- 82. | |
梁 超, 朱雪峰. 2021. 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 51(5): 680−695. | |
Liang C, Zhu X F. 2021. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Scientia Sinica (Terrae), 51(5): 680−695. [in Chinese] | |
乔江波, 朱元骏, 贾小旭, 等. 黄土高原关键带全剖面土壤水分空间变异性. 水科学进展, 2017, 28 (4): 515- 522. | |
Qiao J B, Zhu Y J, Jia X X, et al. Spatial variability of soil water for the entire profile in the critical zone of the Loess Plateau. Advances in Water Science, 2017, 28 (4): 515- 522. | |
渠晨晨, 任稳燕, 李秀秀, 等. 重新认识土壤有机质. 科学通报, 2022, 67 (10): 913- 923. | |
Qu C C, Ren W Y, Li X X, et al. Revisit soil organic matter. Chinese Science Bulletin, 2022, 67 (10): 913- 923. | |
宋长青, 吴金水, 陆雅海, 等. 中国土壤微生物学研究10年回顾. 地球科学进展, 2013, 28 (10): 1087- 1105.
doi: 10.11867/j.issn.1001-8166.2013.10.1087 |
|
Song C Q, Wu J S, Lu Y H, et al. Advances of soil microbiology in the last decade in China. Advances in Earth Science, 2013, 28 (10): 1087- 1105.
doi: 10.11867/j.issn.1001-8166.2013.10.1087 |
|
童永平, 贺美娜, 孙 慧, 等. 黄土关键带深层土壤水分动态模拟与主控因素. 第四纪研究, 2017, 37 (6): 1182- 1192.
doi: 10.11928/j.issn.1001-7410.2017.06.03 |
|
Tong Y P, He M N, Sun H, et al. Simulation and controlling factors of deep soil moisture dynamics in the critical zone in the Chinese Loess Plateau. Quaternary Sciences, 2017, 37 (6): 1182- 1192.
doi: 10.11928/j.issn.1001-7410.2017.06.03 |
|
汪景宽, 徐英德, 丁 凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 2019, 56 (3): 528- 540.
doi: 10.11766/trxb201811140559 |
|
Wang J K, Xu Y D, Ding F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review. Acta Pedologica Sinica, 2019, 56 (3): 528- 540.
doi: 10.11766/trxb201811140559 |
|
王云强, 邵明安, 胡 伟, 等. 黄土高原关键带土壤水分空间分异特征. 地球与环境, 2016, 44 (4): 391- 397. | |
Wang Y Q, Shao M A, Hu W, et al. Spatial variations of soil water content in the critical zone of the Chinese Loess Plateau. Earth and Environment, 2016, 44 (4): 391- 397. | |
温学发, 张心昱, 魏 杰, 等. 地球关键带视角理解生态系统碳生物地球化学过程与机制. 地球科学进展, 2019, 34 (5): 471- 479.
doi: 10.11867/j.issn.1001-8166.2019.05.0471 |
|
Wen X F, Zhang X Y, Wei J, et al. Understanding the biogeochemical process and mechanism of ecosystem carbon cycle from the perspective of the earth’s critical zone. Advances in Earth Science, 2019, 34 (5): 471- 479.
doi: 10.11867/j.issn.1001-8166.2019.05.0471 |
|
杨 阳, 窦艳星, 王宝荣, 等. 黄土高原土壤有机碳固存机制研究进展. 第四纪研究, 2023a, 43 (2): 509- 522. | |
Yang Y, Dou Y X, Wang B R, et al. Advances in soil organic carbon sequestration mechanisms on the Chinese Loess Plateau. Quaternary Sciences, 2023a, 43 (2): 509- 522. | |
杨 阳, 刘良旭, 张萍萍, 等. 黄土高原土壤水分-有机碳-微生物耦合作用研究进展. 生态学报, 2023b, 43 (4): 1714- 1725. | |
Yang Y, Liu L X, Zhang P P, et al. Advances in soil moisture-carbon-microbe coupling on the Loess Plateau. Acta Ecologica Sinica, 2023b, 43 (4): 1714- 1725. | |
张 波, 曲建升, 丁永建. 国际临界带研究发展回顾与美国临界带研究进展介绍. 世界科技研究与发展, 2010, 32 (5): 723- 728.
doi: 10.3969/j.issn.1006-6055.2010.05.044 |
|
Zhang B, Qu J S, Ding Y J. Review of international critical zone research and its development in America. World Sci-Tech R & D, 2010, 32 (5): 723- 728.
doi: 10.3969/j.issn.1006-6055.2010.05.044 |
|
张甘霖, 朱永官, 邵明安. 2019. 地球关键带过程与水土资源可持续利用的机理. 中国科学: 地球科学, 49(12): 1945-1947. | |
Zhang G L, Zhu Y G, Shao M A. 2019. Understanding sustainability of soil and water resources in a critical zone perspective. Scientia Sinica (Terrae), 62: 1716-1718. [in Chinese] | |
朱雪峰, 孔维栋, 黄懿梅, 等. 土壤微生物碳泵概念体系2.0. 应用生态学报, 2024, 35 (1): 102- 110. | |
Zhu X F, Kong W D, Huang Y M, et al. Soil microbial carbon pump conceptual framework 2.0. Journal of Applied Ecology, 2024, 35 (1): 102- 110. | |
朱永官, 李 刚, 张甘霖, 等. 土壤安全: 从地球关键带到生态系统服务. 地理学报, 2015, 70 (12): 1859- 1869.
doi: 10.11821/dlxb201512001 |
|
Zhu Y G, Li G, Zhang G L, et al. Soil security: from Earth's critical zone to ecosystem services. Acta Geographica Sinica, 2015, 70 (12): 1859- 1869.
doi: 10.11821/dlxb201512001 |
|
朱永官, 沈仁芳, 贺纪正, 等. 中国土壤微生物组: 进展与展望. 中国科学院院刊, 2017, 32 (6): 554- 565. | |
Zhu Y G, Shen R F, He J Z, et al. Soil microbiome in China: progress and prospects. Bulletin of the Chinese Academy of Sciences, 2017, 32 (6): 554- 565. | |
朱永官, 段桂兰, 陈保冬, 等. 土壤-微生物-植物系统中矿物风化与元素循环. 中国科学: 地球科学, 2014, 44 (6): 1107- 1116. | |
Zhu Y G, Duan G L, Chen B D, et al. Mineral weathering and element cycling in soil-microbial-plant system. Scientia Sinica (Terrae), 2014, 44 (6): 1107- 1116. | |
Abramoff R Z, Guenet B, Zhang H C, et al. Improved global-scale predictions of soil carbon stocks with Millennial Version 2. Soil Biology and Biochemistry, 2022, 164, 108466.
doi: 10.1016/j.soilbio.2021.108466 |
|
Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 2010, 3 (5): 336- 340.
doi: 10.1038/ngeo846 |
|
Bosatta E, Ågren G I. Soil organic matter quality interpreted thermodynamically. Soil Biology and Biochemistry, 1999, 31 (13): 1889- 1891.
doi: 10.1016/S0038-0717(99)00105-4 |
|
Brantley S L, Lebedeva M. Learning to read the chemistry of regolith to understand the critical zone. Annual Review of Earth and Planetary Sciences, 2011, 39, 387- 416.
doi: 10.1146/annurev-earth-040809-152321 |
|
Brantley S L, McDowell W H, Dietrich W E, et al. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth. Earth Surface Dynamics, 2017, 5 (4): 841- 860.
doi: 10.5194/esurf-5-841-2017 |
|
Brewer T E, Aronson E L, Arogyaswamy K, et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBio, 2019, 10 (5): e01318- 19. | |
Brouillette M. How microbes in permafrost could trigger a massive carbon bomb. Nature, 2021, 591 (7850): 360- 363.
doi: 10.1038/d41586-021-00659-y |
|
Buckeridge K M, Creamer C, Whitaker J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Functional Ecology, 2022, 36 (6): 1396- 1410.
doi: 10.1111/1365-2435.14014 |
|
Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8 (10): 776- 779.
doi: 10.1038/ngeo2520 |
|
Deng L, Liu G B, Shangguan Z P. Land-use conversion and changing soil carbon stocks in China's ‘grain-for-green’ program: a synthesis. Global Change Biology, 2014, 20 (11): 3544- 3556.
doi: 10.1111/gcb.12508 |
|
Fan X L, Gao D C, Zhao C H, et al. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. The ISME Journal, 2021, 15 (8): 2248- 2263.
doi: 10.1038/s41396-021-00914-0 |
|
Feng X M, Fu B J, Piao S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6 (11): 1019- 1022.
doi: 10.1038/nclimate3092 |
|
Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 2017, 45, 223- 243.
doi: 10.1146/annurev-earth-063016-020552 |
|
Gunina A, Kuzyakov Y. From energy to (soil organic) matter. Global Change Biology, 2022, 28 (7): 2169- 2182.
doi: 10.1111/gcb.16071 |
|
Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth Environment, 2022, 4, 4- 18.
doi: 10.1038/s43017-022-00366-w |
|
Hemingway J D, Rothman D H, Grant K E, et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 2019, 570 (7760): 228- 231.
doi: 10.1038/s41586-019-1280-6 |
|
Herrmann A M, Coucheney E, Nunan N. Isothermal microcalorimetry provides new insight into terrestrial carbon cycling. Environmental Science Technology, 2014, 48 (8): 4344- 4352.
doi: 10.1021/es403941h |
|
Hoehler T M, Jørgensen B B. Microbial life under extreme energy limitation. Nature Reviews Microbiology, 2013, 11 (2): 83- 94.
doi: 10.1038/nrmicro2939 |
|
Huang L M, Shao M A. Advances and perspectives on soil water research in China’s Loess Plateau. Earth-Science Reviews, 2019, 199, 102962.
doi: 10.1016/j.earscirev.2019.102962 |
|
Jia X X, Zhu Y J, Huang L M, et al. Mineral N stock and nitrate accumulation in the 50 to 200 m profile on the Loess Plateau. Science of the Total Environment, 2018, 633, 999- 1006.
doi: 10.1016/j.scitotenv.2018.03.249 |
|
Jiao S, Chen W M, Wang J L, et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 2018, 6 (1): 3- 13.
doi: 10.1186/s40168-017-0391-2 |
|
Kelleher B P, Simpson A J. 2006. Humic substances in soils: are they really chemically distinct? Environmental Science Technology, 40(15): 4605−4611. | |
Keskin H, Grunwald S, Harris W G. Digital mapping of soil carbon fractions with machine learning. Geoderma, 2019, 339, 40- 58.
doi: 10.1016/j.geoderma.2018.12.037 |
|
Kleber M, Bourg I C, Coward E K, et al. Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment, 2021, 2 (6): 402- 421. | |
Kong W B, Wei X R, Wu Y H, et al. Afforestation can lower microbial diversity and functionality in deep soil layers in a semiarid region. Global Change Biology, 2022, 28 (20): 6086- 6101.
doi: 10.1111/gcb.16334 |
|
Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature, 2015, 528 (7580): 60- 68.
doi: 10.1038/nature16069 |
|
Li T T, Yuan Y, Mou Z J, et al. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration. Global Change Biology, 2023, 29 (2): 533- 546.
doi: 10.1111/gcb.16467 |
|
Liang C, Kästner M, Joergensen R G. Microbial necromass on the rise: the growing focus on its role in soil organic matter development. Soil Biology and Biochemistry, 2020, 150, 108006.
doi: 10.1016/j.soilbio.2020.108006 |
|
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2 (8): 1- 6. | |
Lin H. Earth's critical zone and hydropedology: concepts, characteristics, and advances. Hydrology and Earth System Sciences, 2010, 14 (1): 25- 45.
doi: 10.5194/hess-14-25-2010 |
|
Liu G Y, Chen L L, Deng Q, et al. Vertical changes in bacterial community composition down to a depth of 20 m on the degraded loess plateau in China. Land Degradation and Development, 2020, 31 (142): 1300- 1313. | |
Lonardo D P, De Boer W, Gunnewiek P K, et al. Priming of soil organic matter: chemical structure of added compounds is more important than the energy content. Soil Biology and Biochemistry, 2017, 108, 41- 54.
doi: 10.1016/j.soilbio.2017.01.017 |
|
Lugato E, Lavallee J M, Haddix M L, et al. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 2021, 14 (5): 295- 300.
doi: 10.1038/s41561-021-00744-x |
|
Lü Y H, Li T, Zhang K, et al. Fledging critical zone science for environmental sustainability. Environmental Science & Technology, 2017, 51, 8209- 8211. | |
Ma T, Zhu S S, Wang Z H, et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 2018, 9 (1): 3480.
doi: 10.1038/s41467-018-05891-1 |
|
Malik A A, Martiny J B, Brodie E L, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 2020, 14 (1): 1- 9.
doi: 10.1038/s41396-019-0510-0 |
|
Odum E P. Energy flow in ecosystems: a historical review. American Zoologist, 1968, 8 (1): 11- 18.
doi: 10.1093/icb/8.1.11 |
|
Patoine G, Eisenhauer N, Cesarz S, et al. Drivers and trends of global soil microbial carbon over two decades. Nature Communications, 2022, 13 (1): 4195.
doi: 10.1038/s41467-022-31833-z |
|
Ren C J, Wang J Y, Bastida F, et al. Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes. Global Change Biology, 2022, 28 (4): 1516- 1528.
doi: 10.1111/gcb.16004 |
|
Richter D D, Billings S A. ‘One physical system’: Tansley's ecosystem as Earth's critical zone. New Phytologist, 2015, 206 (3): 900- 912.
doi: 10.1111/nph.13338 |
|
Richter D D, Mobley M L. Monitoring Earth's critical zone. Science, 2009, 326 (5956): 1067- 1068.
doi: 10.1126/science.1179117 |
|
Schimel J P, Weintraub M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry, 2003, 35 (4): 549- 563.
doi: 10.1016/S0038-0717(03)00015-4 |
|
Soong J L, Fuchslueger L, Marañon-Jimenez S, et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology, 2020, 26 (4): 1953- 1961.
doi: 10.1111/gcb.14962 |
|
Sun Y B, McManus J F, Clemens S C, et al. Persistent orbital influence on millennial climate variability through the Pleistocene. Nature Geoscience, 2021, 14 (11): 812- 818.
doi: 10.1038/s41561-021-00794-1 |
|
Thompson L R, Sanders J G, McDonald D, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 2017, 551 (7681): 457.
doi: 10.1038/nature24621 |
|
Throckmorton H M, Bird J A, Monte N, et al. The soil matrix increases microbial C stabilization in temperate and tropical forest soils. Biogeochemistry, 2015, 122, 35- 45.
doi: 10.1007/s10533-014-0027-6 |
|
Wang G S, Gao Q, Yang Y F, et al. Soil enzymes as indicators of soil function: a step toward greater realism in microbial ecological modeling. Global Change Biology, 2022, 28 (5): 1935- 1950.
doi: 10.1111/gcb.16036 |
|
Wieder W R, Bonan G B, Allison S D. Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change, 2013, 3 (10): 909- 912.
doi: 10.1038/nclimate1951 |
|
Wu H Y, Adams J M, Shi Y, et al. Depth-dependent patterns of bacterial communities and assembly processes in a typical red soil critical zone. Geomicrobiology Journal, 2020b, 37 (3): 201- 212.
doi: 10.1080/01490451.2019.1688432 |
|
Wu X T, Wei Y P, Fu B J, et al. Evolution and effects of the social-ecological system over a millennium in China’s Loess Plateau. Science Advances, 2020a, 6 (41): eabc0276.
doi: 10.1126/sciadv.abc0276 |
|
Xiao K Q, Zhao Y, Liang C, et al. Introducing the soil mineral carbon pump. Nature Reviews Earth & Environment, 2023, 4, 135- 136. | |
Yang Y, Dou Y X, Wang B R, et al. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry, 2022, 170, 108688.
doi: 10.1016/j.soilbio.2022.108688 |
|
Yang Y, Liu L X, Zhang P P, et al. Large-scale ecosystem carbon stocks and their driving factors across Loess Plateau. Carbon Neutrality, 2023, 2 (1): 5.
doi: 10.1007/s43979-023-00044-w |
|
Zhang J, Liu C, Xu J. 2024. Earth critical zone: a comprehensive exploration of the earth’s surface processes. Earth Critical Zone, 1(1): 100001. | |
Zhang Y, Gao Y, Zhang Y, et al. Linking Rock-Eval parameters to soil heterotrophic respiration and microbial residues in a black soil. Soil Biology and Biochemistry, 2023, 178, 108939.
doi: 10.1016/j.soilbio.2023.108939 |
|
Zhu X M, Zhang Z L, Wang Q T, et al. More soil organic carbon is sequestered through the mycelium pathway than through the root pathway under nitrogen enrichment in an alpine forest. Global Change Biology, 2022, 28 (16): 4947- 4961.
doi: 10.1111/gcb.16263 |
[1] | 白雪娟, 翟国庆, 刘敬泽. 13C稳定同位素在陆地生态系统植物-微生物-土壤碳循环中的应用[J]. 林业科学, 2024, 60(7): 175-190. |
[2] | 沈琛琛,肖文发,朱建华,曾立雄,陈吉臻,黄志霖. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J]. 林业科学, 2024, 60(3): 65-77. |
[3] | 韩新生,刘广全,许浩,董立国,郭永忠,安钰,万海霞,王月玲. 宁夏黄土区典型坡面表层土壤有机碳含量的空间变化特征及尺度效应[J]. 林业科学, 2024, 60(1): 19-31. |
[4] | 王宏星,孙晓梅,陈东升,吴春燕,张守攻. 适度间伐对日本落叶松人工林生物多样性和土壤多功能性影响[J]. 林业科学, 2023, 59(6): 1-11. |
[5] | 游巍斌,李颖,周艳,何东进. 武夷山国家公园马尾松林改为茶园后影响表层土壤碳含量的林缘效应[J]. 林业科学, 2023, 59(10): 41-49. |
[6] | 彭金根,龚金玉,范玉海,张华,张银凤,白宇清,王艳梅,谢利娟. 毛棉杜鹃根际与非根际土壤微生物群落多样性[J]. 林业科学, 2022, 58(2): 89-99. |
[7] | 曹俐,王阳,杨蕴力,郑雨,王伟,刘桂丰,姜静. 转BpGLK裂叶桦生长变异、根际土壤酶活性及微生物群落组成[J]. 林业科学, 2022, 58(12): 21-31. |
[8] | 陈永忠,刘彩霞,许彦明,张震,彭映赫,陈隆升,苏以荣,王瑞,唐炜. 生草栽培对油茶林土壤微生物群落结构和稳定性的影响[J]. 林业科学, 2022, 58(11): 61-70. |
[9] | 张伟溪,王颜波,丁昌俊,朱文旭,苏晓华. 成龄转基因银中杨试验林外源基因水平转移及土壤微生物连年监测[J]. 林业科学, 2022, 58(1): 52-61. |
[10] | 郑翔,曹敏敏,纪小芳,方万力,刘胜龙,姜姜. 森林土壤氧化亚氮排放对磷添加响应的研究进展[J]. 林业科学, 2021, 57(6): 150-157. |
[11] | 谢云,郭芳芸,陈丽华,曹兵. 大气CO2浓度升高对宁夏枸杞根区土壤微生物功能多样性及碳源利用特征的影响[J]. 林业科学, 2021, 57(4): 163-172. |
[12] | 李益,冯秀秀,赵发珠,郭垚鑫,王俊,任成杰. 秦岭太白山不同海拔锐齿栎林土壤微生物群落的变化特征[J]. 林业科学, 2021, 57(12): 22-31. |
[13] | 胡海清,罗碧珍,罗斯生,魏书精,王振师,李小川,刘菲. 林火干扰对森林生态系统碳库的影响研究进展[J]. 林业科学, 2020, 56(4): 160-169. |
[14] | 胡宗达,刘世荣,刘兴良,罗明霞,胡璟,李亚非,余昊,欧定华,吴德勇. 川西亚高山3种天然次生林土壤有机碳氮组分特征[J]. 林业科学, 2020, 56(11): 1-11. |
[15] | 丁令智, 满秀玲, 肖瑞晗, 蔡体久. 寒温带森林根际土壤微生物量碳氮含量生长季内动态变化[J]. 林业科学, 2019, 55(7): 178-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||