欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (12): 24-33.doi: 10.11707/j.1001-7488.LYKX20250408

• 前沿热点 • 上一篇    

基于CBM-CFS3模型的不同采伐情景下马尾松人工林生态系统碳动态

朱粟锋1,勾蒙蒙1,2,赵海平1,刘常富1,2,*(),简尊吉1,2,朱建华1,2,肖文发1,2   

  1. 1. 中国林业科学研究院森林生态环境与自然保护研究所 国家林业和草原局森林生态环境重点实验室 北京100091
    2. 湖北秭归三峡库区森林生态系统定位观测研究站 秭归443600
  • 收稿日期:2025-06-24 修回日期:2025-09-12 出版日期:2025-12-25 发布日期:2026-01-08
  • 通讯作者: 刘常富 E-mail:liucf898@163.com
  • 基金资助:
    国家重点研发计划项目(2023YFE0112804);中央级公益性科研院所基本科研业务费专项资金(CAFYBB2022XD002)。

Simulated Carbon Dynamics of Pinus massoniana Plantation Ecosystems under Different Harvesting Scenarios Using the CBM-CFS3 Model

Sufeng Zhu1,Mengmeng Gou1,2,Haiping Zhao1,Changfu Liu1,2,*(),Zunji Jian1,2,Jianhua Zhu1,2,Wenfa Xiao1,2   

  1. 1. Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration Ecology and Nature Conservation Institute, Chinese Academy of Forestry Beijing 100091
    2. Three Gorges Reservoir Forest Ecosystem Observation and Research Station, Zigui, Hubei Province Zigui 443600
  • Received:2025-06-24 Revised:2025-09-12 Online:2025-12-25 Published:2026-01-08
  • Contact: Changfu Liu E-mail:liucf898@163.com

摘要:

目的: 厘清采伐干扰下人工林碳库变化以及碳收支响应规律,为人工林木材生产与碳汇功能双提升的科学经营提供新的思路和视角。方法: 以我国亚热带地区马尾松人工林为研究对象,利用经参数本地化改进的CBM-CFS3模型模拟马尾松人工林碳库组分差异以及不同采伐强度下(0、10%、25%和40%)未来41年碳汇变化。结果: 各类马尾松人工林的Richards方程拟合效果良好(R2≥0.57,MAE≤15.54 m3?hm?2,RMSE≤17.50 m3?hm?2),能够较为广泛地表征区域内马尾松生长态势。2018年马尾松人工林生态系统平均碳密度为122.97 Mg?hm?2(植被层34.79 Mg?hm?2、死亡有机质32.00 Mg?hm?2、土壤56.18 Mg?hm?2),其中植被层各碳库的碳密度整体呈现出干>根>枝>叶的排序。在采伐周期为15年的各类经营情景下,2019—2060年马尾松人工林所能达到的碳密度最大值和固碳速率最大值均为10%采伐强度>0采伐强度>25%采伐强度>40%采伐强度;15年采伐周期+10%采伐强度情景的最大碳密度和最大固碳速率分别可达194.73 Mg?hm?2和2.30 Mg?hm?2a?1,到2060年时,我国马尾松人工林碳储量最高可达494.17 Tg,其中生物量碳储量可达217.94 Tg。结论: CBM-CFS3模型经参数本地化改进后可对马尾松人工林各碳库分布及碳密度变化进行良好模拟。10%采伐强度情景下,马尾松人工林具备最大的固碳潜力,能够兼顾木材生产和碳汇功能。建议在人工林经营中采取适度的采伐强度和周期,以此帮助快速更新老化林分,在保证高出材率的同时提高碳固存能力。

关键词: CBM-CFS3模型, 马尾松人工林, 采伐经营, 生态系统, 碳汇

Abstract:

Objective: This study aims to clarify the dynamics of carbon pool changes and carbon balance responses of plantations under harvesting disturbances, so as to provide guidance for scientific management of the dual enhancement of timber production and carbon sink functions of plantations. Method: Pinus massoniana plantations in subtropical China were taken as the object. The CBM-CFS3 model improved by parameter localization was used to simulate differences in carbon pool components and future carbon sink dynamics over the next 41 years under four harvesting intensities (0%, 10%, 25% and 40%). Result: The Richards equation provided a good fit for various types of P. massoniana plantations (R2≥0.57, MAE≤15.54 m3?hm?2, RMSE≤17.50 m3?hm?2), and was able to effectively characterize stand growth patterns of P. massoniana across the region. In 2018, the average ecosystem carbon density was 122.97 Mg?hm?2, with contributions from vegetation layer (34.79 Mg?hm?2), dead organic matter (32.00 Mg?hm?2), and soil (56.18 Mg?hm?2). Within the vegetation carbon pool, the order of carbon density was stem > root > branch > foliage. Under management scenarios with a harvesting cycle of 15-year, the maximum carbon density and the maximum sequestration rate achieved by P. massoniana plantations between 2019 and 2060 were as the follow: 10% harvesting intensity > no harvesting > 25% harvesting intensity > 40% harvesting intensity. Specifically, under the 15-year harvesting cycle with 10% harvesting intensity scenario, the maximum carbon density reached 194.73 Mg?hm?2, and a maximum sequestration rate reached 2.30 Mg?hm?2a?1. By 2060, the total carbon stock of P. massoniana plantations in China could reach 494.17 Tg, including 217.94 Tg in biomass. Conclusion: The CBM-CFS3 model improved by parameter localization can effectively simulate distributions of carbon pools and dynamics of carbon density in P. massoniana plantations. Under the scenario of 10% harvesting intensity, P. massoniana plantations have the greatest carbon sequestration potential, balancing timber production with carbon sink function. It is recommended to adopt moderate harvesting intensity and cycle in plantation management to promote the rapid renewal of aging stands, thereby ensuring high timber yield while enhancing carbon sequestration capacity.

Key words: CBM-CFS3 model, Pinus massoniana plantations, harvesting management, ecosystem, carbon sink

中图分类号: