林业科学 ›› 2025, Vol. 61 ›› Issue (11): 1-13.doi: 10.11707/j.1001-7488.LYKX20250243
• 前沿热点 • 下一篇
舒韦维1,3,明安刚1,*(
),杨坤1,李华1,3,闵惠琳1,3,陶怡1,李忠国1,3,韦菊玲1,刘世荣2
收稿日期:2025-04-19
修回日期:2025-08-23
出版日期:2025-11-25
发布日期:2025-12-11
通讯作者:
明安刚
E-mail:mingangang0111@163.com
基金资助:
Weiwei Shu1,3,Angang Ming1,*(
),Kun Yang1,Hua Li1,3,Huilin Min1,3,Yi Tao1,Zhongguo Li1,3,Juling Wei1,Shirong Liu2
Received:2025-04-19
Revised:2025-08-23
Online:2025-11-25
Published:2025-12-11
Contact:
Angang Ming
E-mail:mingangang0111@163.com
摘要:
目的: 探究近自然化改造对南亚热带针叶人工林土壤有机碳化学组分及其分布均匀性的影响,为揭示针叶人工林近自然经营土壤有机碳化学稳定性机制提供参考依据。方法: 以经过疏伐后在林下补植乡土阔叶树(大叶栎和格木)的马尾松和杉木近自然化改造林及未改造纯林(包括马尾松改造林、杉木改造林、马尾松对照林和杉木对照林)为对象,采用13C核磁共振技术系统分析土壤、凋落物和细根的有机碳化学组分(烷基碳、氧烷基碳、芳香碳、羰基碳),并利用Pielou均匀度指数评估土壤、凋落物和细根总有机碳中各类有机碳组分分布的均匀程度。结果: 1) 近自然化改造可显著改变马尾松林凋落物、细根和土壤有机碳化学组分:凋落物中,烷基碳比例提高,而氧烷基碳和芳香碳比例降低;细根中,烷基碳比例提高,芳香碳比例降低;土壤中,烷基碳比例提高,氧烷基碳比例降低(P<0.05);然而,近自然化改造对杉木人工林凋落物、细根和土壤中的各有机碳化学组分均无显著影响。2) 马尾松改造林土壤、凋落物和细根的烷基碳比例/氧烷基碳比例比值以及凋落物、土壤Pielou均匀度指数均显著提高。3) 近自然化改造可显著增加土壤微生物生物量碳,但并未显著影响土壤细菌Chao1多样性指数和Shannon-Wiener多样性指数。4) RDA分析表明,细根烷基碳比例和氧烷基碳比例是影响土壤有机碳化学组分最关键的2个因子,说明与凋落物相比,细根有机碳化学组分是导致纯林和改造林土壤有机碳化学组分差异的关键因素。结论: 近自然化改造对土壤有机碳化学稳定性的影响具有明显的树种特异性:马尾松林改造后土壤有机碳化学组分分布更均匀,烷基碳比例及烷基碳比例/氧烷基碳比例比值显著提升,有效增强了有机碳的化学稳定性,而杉木林改造后未产生类似效应。
中图分类号:
舒韦维,明安刚,杨坤,李华,闵惠琳,陶怡,李忠国,韦菊玲,刘世荣. 近自然化改造对马尾松和杉木人工林土壤有机碳化学稳定性的影响[J]. 林业科学, 2025, 61(11): 1-13.
Weiwei Shu,Angang Ming,Kun Yang,Hua Li,Huilin Min,Yi Tao,Zhongguo Li,Juling Wei,Shirong Liu. Effects of Close-to-Nature Transformation on the Chemical Stability of Soil Organic Carbon in Pinus massoniana and Cunninghamia lanceolata Plantations[J]. Scientia Silvae Sinicae, 2025, 61(11): 1-13.
表1
林分基本情况与经营历史"
| 年份 Years | 项目 Item | 杉木对照林Cunninghamia lanceolata control plantation | 杉木改造林Close-to-nature transformed Cunninghamia lanceolata plantation | 马尾松对照林 Pinus massoniana control plantation | 马尾松改造林 Close-to-nature transformed Pinus massoniana plantation |
| 1993 | 造林Afforestation | 种植2年生容器苗,初植密度 | 种植2年生容器苗,初植密度 | 种植2年生容器苗,初植密度 | 种植2年生容器苗,初植密度 |
| 1993— 1995 | 新造林抚育Tending of young plantation | 全铲抚育6次 Complete clearing (6 times) | 全铲抚育6次 Complete clearing (6 times) | 全铲抚育6次 Complete clearing (6 times) | 全铲抚育6次 Complete clearing (6 times) |
| 2000 | 透光伐Release cutting | 透光伐Release cutting | 透光伐Release cutting | 透光伐Release cutting | 透光伐Release cutting |
| 2004 | 生长伐Increment thinning | 保留密度 | 保留密度 | 保留密度 | 保留密度 |
| 2007 | 生长伐Increment thinning | 保留密度 | 保留密度600株? hm?2 Reserved density: 600 trees·hm?2 | 保留密度 | 保留密度600株?hm?2 Reserved density: 600 trees·hm?2 |
| 2008 | 林下补植Understory replanting | 不补植No replanting | 均匀补植大叶栎、格木各 300株?hm?2 Evenly replanting Quercus griffithii and Erythrophleum fordii (300 trees·hm?2 each) | 不补植No replanting | 均匀补植大叶栎、格木各 300株?hm?2 Evenly replanting Quercus griffithii and Erythrophleum fordii (300 trees·hm?2 each) |
| 2009 | 改造林抚育Tending in transformed plantation | 不抚育No tending | 抚育2次Tending (2 times) | 不抚育No tending | 抚育2次Tending (2 times) |
表2
林分概况①"
| 指标Indices | 树种 Tree species | 杉木对照林Cunninghamia lanceolatea control plantation | 杉木改造林Close-to-nature transformed Cunninghamia lanceolata plantation | 马尾松对照林Pinus massoniana control plantation | 马尾松改造林Close-to-nature transformed Pinus massoniana plantation |
| DBH/cm | 杉木Cunninghamia lanceolata | 14.87±4.31a | 20.78±3.47b | — | — |
| 马尾松Pinus massoniana | — | — | 26.91±7.56b | 35.33±6.32a | |
| 格木Erythrophleum fordii | — | 7.51±4.41a | — | 5.71±3.29a | |
| 大叶栎Quercus griffithii | — | 21.47±7.75a | — | 26.93±7.97a | |
| 树高Tree height/m | 杉木Cunninghamia lanceolata | 13.63±2.05a | 14.01±1.72a | — | — |
| 马尾松Pinus massoniana | — | — | 20.31±3.16a | 21.23±2.29a | |
| 格木Erythrophleum fordii | — | 7.23±3.43a | — | 6.29±3.53a | |
| 大叶栎Quercus griffithii | — | 13.92±2.72b | — | 18.49±4.38a | |
| 土层厚度 Soil thickness/cm | ≥100 | ≥100 | ≥100 | ≥100 | |
| 坡向 Slope aspect | 西南Southwest | 西南Southwest | 西北Northwest | 西北Northwest | |
| 坡度 Slope/ (°) | 24.6±2.6a | 23.1±2.9a | 21.3±3.6a | 22.4±4.1a | |
| 郁闭度 Canopy density | 0.78±0.09b | 0.79±0.11b | 0.71±0.09b | 0.88±0.03a | |
| 凋落物量 Litter fall/(t?hm?2a?1) | 9.02±0.19b | 9.54±0.34 | 10.23±0.94a | 10.84±0.49a |
表3
土壤化学、生物学性质①"
| 指标Indices | 杉木对照林Cunninghamia lanceolata control plantation | 杉木改造林Close-to-nature transformed Cunninghamia lanceolata plantation | 马尾松对照林Pinus massoniana control plantation | 马尾松改造林Close-to-nature transformed Pinus massoniana plantation |
| 有机碳含量Organic carbon (SOC)content/(g·kg?1) | 21.10±4.08a | 23.03±0.42a | 30.35±2.84a | 30.38±2.82a |
| 全氮含量Total nitrogen(TN) content/(g·kg?1) | 1.50±0.25a | 1.37±0.03a | 1.82±0.01a | 1.93±0.04a |
| 全磷含量Total phosphorus (TP) content/(g·kg?1) | 0.23±0.01b | 0.25±0.02ab | 0.28±0.01ab | 0.29±0.01a |
| 有效磷含量Available phosphorus (AP) content/(mg·kg?1) | 1.11±0.03b | 1.16±0.03b | 1.55±0.02a | 1.28±0.12b |
| 硝态氮含量NO3?-N content/(mg·kg?1) | 5.38±0.88b | 4.37±1.24b | 5.71±0.24b | 12.65±1.56a |
| 铵态氮含量NH4+-N content/(mg·kg?1) | 7.81±0.10b | 15.89±4.38a | 4.23±1.31c | 9.26±0.23b |
| 微生物生物量碳含量Microbial biomass carbon (MBC) content/(mg·kg?1) | 234.44±14.75c | 312.50±16.26b | 301.12±12.27b | 388.13±5.88a |
| 微生物生物量氮含量Microbial biomass nitrogen (MBN) content/(mg·kg?1) | 36.41±3.22b | 46.51±2.11ab | 39.07±3.29b | 53.30±4.06a |
| 细菌Chao1多样性指数 Bacterial Chao1 diversity index | ||||
| 细菌Shannon-Wiener多样性指 数Bacterial Shannon-Wiener diversity index | 5.87±0.11a | 5.72±0.12a | 5.60±0.02a | 5.61±0.04a |
| 细根生物量 Fine root biomass (FRB)/(g·m?2) | 401.57±53.71b | 675.26±21.50ab | 536.92±65.16b | 862.86±202.43a |
图5
土壤有机碳化学组分比例与植物微生物指标之间的相关性 *P<0.05,**P<0.01,***P<0.001. L_alkyl C:凋落物烷基碳比例Litter alkyl C proportion;L_ O-alkyl C:凋落物氧烷基碳比例Litter O-alkyl C proportion;L_aromatic C:凋落物芳香碳比例Litter aromatic C proportion;L_carbonyl C:凋落物羰基碳比例Litter carbonyl C proportion;F_alkyl C:细根烷基碳比例Fine root alkyl C proportion;F_O-alkyl C:细根氧烷基碳比例Fine root O-alkyl C proportion;F_aromatic C:细根芳香碳比例Fine root aromatic C proportion;F_carbonyl C:细根羰基碳比例Fine root carbonyl C proportion;L_A/OA:凋落物烷基碳比例/氧烷基碳比例Litter alkyl proportion/O-alkyl C proportion;F_A/OA:细根烷基碳比例/氧烷基碳比例Fine root alkyl proportion /O-alkyl C proportion;L_Arom/OA:凋落物芳香碳比例/氧烷基碳比例Litter aromatic C proportion/O-alkyl C proportion;F_Arom/OA:细根芳香碳比例/氧烷基碳比例Fine root aromatic C proportion/O-alkyl C proportion;L_Pielou:凋落物Pielou均匀度指数Litter Pielou evenness index;F_Pielou:细根Pielou均匀度指数Fine root Pielou evenness index;MBC:微生物生物量碳Microbial biomass carbon;MBN:微生物生物量氮Microbial biomass nitrogen;Chao1:细菌Chao1多样性指数Bacterial Chao1 diversity index;Shannon:细菌香农-维纳多样性指数Bacterial Shannon-Wiener diversity index;FRB:细根生物量Fine root biomass."
图7
随机森林分析土壤化学性质对烷基碳、氧烷基碳、芳香碳和羰基碳比例的影响 MSE: 均方误差Mean squared error. *P<0.05,**P<0.01. TK: 全钾含量Total potassium;SOC: 土壤有机碳含量Soil organic carbon content;TP: 全磷含量Total phosphorus content;AK: 速效钾含量Available potassium content;TN: 全氮含量Total nitrogen content;NH4+-N: 铵态氮含量Ammonium nitrogen content;AP: 有效磷含量Available phosphorus content;NO3−-N: 硝态氮含量Nitrate nitrogen content."
| 李克让, 陈育峰, 刘世荣, 等. 减缓及适应全球气候变化的中国林业对策. 地理学报, 1996, 51 (S1): 109- 119. | |
| Li K R, Chen Y F, Liu S R, et al. Mitigation and adaptation strategy of forestry in China to global climate change. Acta Geographica Sinica, 1996, 51 (S1): 109- 119. | |
| 刘世荣, 王 晖, 李海奎, 等. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径. 林业科学, 2024, 60 (4): 157- 172. | |
| Liu S R, Wang H, Li H K, et al. Projections of china’s forest carbon storage and sequestration and ways of their potential capacity enhancement. Scientia Silvae Sinicae, 2024, 60 (4): 157- 172. | |
| 刘世荣, 王 晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展. 生态学报, 2011, 31 (19): 5437- 5448. | |
| Liu SR, Wang H, Luan J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China. Acta Ecologica Sinica, 2011, 31 (19): 5437- 5448. | |
| 王 宁, 杨 雪, 李世兰, 等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态. 林业科学, 2016, 52 (1): 150- 158. | |
| Wang N, Yang X, Li S L, et al. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient. Scientia Silvae Sinicae, 2016, 52 (1): 150- 158. | |
| 王秋丽, Albert M. 近自然森林经营在德国的应用成效分析. 林业科学研究, 2019, 32 (3): 127- 134. | |
| Wang Q L, Albert M. Effect of close-to-nature forest management practice in Germany. Forest Research, 2019, 32 (3): 127- 134. | |
|
Augusto L, Boča A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nature Communications, 2022, 13 (1): 1097.
doi: 10.1038/s41467-022-28748-0 |
|
|
Baldock J A, Oades J M, Waters A G, et al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry, 1992, 16 (1): 1- 42.
doi: 10.1007/BF02402261 |
|
|
Bradford M A, Keiser A D, Davies C A, et al. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 2013, 113 (1/3): 271- 281.
doi: 10.1007/s10533-012-9822-0 |
|
| Chang J J, Zhu J X, Xu L, et al. Rational land-use types in the karst regions of China: insights from soil organic matter composition and stability. Catena, 2017, 160, 345- 353. | |
|
Crow S E, Lajtha K, Filley T R, et al. Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Global Change Biology, 2009, 15 (8): 2003- 2019.
doi: 10.1111/j.1365-2486.2009.01850.x |
|
|
Dixon R K, Solomon A M, Brown S. Carbon pools and flux of global forest ecosystems. Science, 1994, 263 (5144): 185- 190.
doi: 10.1126/science.263.5144.185 |
|
|
Ei Moujahid L, Le Roux X, Michalet S, et al. Effect of plant diversity on the diversity of soil organic compounds. PLoS ONE, 2017, 12 (2): e0170494.
doi: 10.1371/journal.pone.0170494 |
|
|
Gu S S, Cheng Q L, Bai Y Q, et al. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil Tillage Research, 2019, 195, 104356.
doi: 10.1016/j.still.2019.104356 |
|
|
Hannam K D, Quideau S A, Oh S W, et al. Forest floor composition in aspen- and spruce-dominated stands of the boreal mixedwood forest. Soil Science Society America Journal, 2004, 68 (5): 1735- 1743.
doi: 10.2136/sssaj2004.1735 |
|
|
Henneron L, Cros C, Picon-Cochard C, et al. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. Journal of Ecology, 2020, 108 (2): 528- 545.
doi: 10.1111/1365-2745.13276 |
|
| Huang X M, Liu S R, You Y M, et al. Microbial community and associated enzymes activity influence soil carbon chemical composition in Eucalyptus urophylla plantation with mixing N2-fixing species in subtropical China. Plant Soil, 2016, 414 (1/2): 199- 212. | |
| Johnson D, Booth R E, Whiteley A S, et al. Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. European Journal of Soil Science, 2010, 54 (4): 671- 678. | |
| Kelty M. The role of species mixtures in plantation forestry. Forest Ecology and Management, 2006, 233 (2/3): 195- 204. | |
|
Krishna M, Mohan M. Litter decomposition in forest ecosystems: a review. Energy Ecology and Environment, 2017, 2 (4): 236- 249.
doi: 10.1007/s40974-017-0064-9 |
|
|
Lehmann J, Hansel C M, Kaiser C, et al. Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 2020, 13 (8): 529- 534.
doi: 10.1038/s41561-020-0612-3 |
|
|
Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature, 2015, 528 (7580): 60- 68.
doi: 10.1038/nature16069 |
|
| Liu S R, Wu S R, Wang H. Managing planted forests for multiple uses under a changing environment in China. New Zealand Journal of Forestry Science, 2014, 44 (Sup.1): 1−10. | |
|
Liu X, Trogisch S, He J S, et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 2018, 285 (1885): 20181240.
doi: 10.1098/rspb.2018.1240 |
|
| Lorenz K, Lal R. Stabilization of organic carbon in chemically separated pools in reclaimed coal mine soils in Ohio. Geoderma, 2007, 141 (3/4): 294- 301. | |
|
Luan J W, Liu S R, Wang J X, et al. Tree species diversity promotes soil carbon stability by depressing the temperature sensitivity of soil respiration in temperate forests. Science of the Total Environment, 2018, 645, 623- 629.
doi: 10.1016/j.scitotenv.2018.07.036 |
|
|
Marcin C, Niklińska M. Effect of texture and tree species on microbial properties of mine soils. Applied Soil Ecology, 2010, 46 (2): 268- 275.
doi: 10.1016/j.apsoil.2010.08.002 |
|
|
Margenot A J, Calderón F J, Bowles T M, et al. Soil organic matter functional group composition in relation to organic carbon nitrogen, and phosphorus fractions in organically managed tomato fields. Soil Science Society of America Journal, 2015, 79 (3): 772- 782.
doi: 10.2136/sssaj2015.02.0070 |
|
|
Ming A G, Yang Y J, Liu S R, et al. The impact of near natural forest management on the carbon stock and sequestration potential of Pinus massoniana (Lamb. ) and Cunninghamia lanceolata (Lamb. ) Hook. plantations. Forests, 2019, 10 (8): 626.
doi: 10.3390/f10080626 |
|
| Mölder A, Sennhenn-Reulen H, Fischer C, et al. Success factors for high-quality oak forest (Quercus robur, Q. petraea) regeneration. Forest Ecosystems, 2019, 6 (1): 109- 125. | |
|
Mulder C P B, Bazeley-White E, Dimitrakopoulos P G, et al. Species evenness and productivity in experimental plant communities. Oikos, 2004, 107 (1): 50- 63.
doi: 10.1111/j.0030-1299.2004.13110.x |
|
|
Porazinska D L, Bardgett R D, Blaauw M B, et al. Relationships at the aboveground-belowground interface: plants, soil biota, and soil. Ecological Monographs, 2003, 73 (3): 377- 395.
doi: 10.1890/0012-9615(2003)073[0377:RATAIP]2.0.CO;2 |
|
|
Schmidt M W I, Knicker H, Hatcher P G, et al. Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid. European Journal of Soil Science, 1997, 48 (2): 319- 328.
doi: 10.1111/j.1365-2389.1997.tb00552.x |
|
|
Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478 (7367): 49- 56.
doi: 10.1038/nature10386 |
|
|
Solomon D, Lehmann J, Kinyangi J, et al. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Global Change Biology, 2007, 13 (2): 511- 530.
doi: 10.1111/j.1365-2486.2006.01304.x |
|
|
Sun D S, Qiu X L, Feng J Y, et al. Forest types control the contribution of litter and roots to labile and persistent soil organic carbon. Biogeochemistry, 2024, 167 (12): 1609- 1617.
doi: 10.1007/s10533-024-01185-5 |
|
| Wang H, Liu S R, Mo J M, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Journal of Ecological Research, 2010, 25, 1071- 1079. | |
|
Wang H, Liu S R, Song Z C, et al. Introducing nitrogen-fixing tree species and mixing with Pinus massoniana alters and evenly distributes various chemical compositions of soil organic carbon in a planted forest in southern China. Forest Ecology and Management, 2019, 449, 117477.
doi: 10.1016/j.foreco.2019.117477 |
|
|
Wang H, Liu S R, Wang J X, et al. Mixed-species plantation with Pinus massoniana and Castanopsis hystrix accelerates C loss in recalcitrant coniferous litter but slows C loss in labile broadleaf litter in southern China. Forest Ecology and Management, 2018, 422, 207- 213.
doi: 10.1016/j.foreco.2018.04.024 |
|
|
Yang X, Wang B, Fakher A, et al. Contribution of roots to soil organic carbon: from growth to decomposition experiment. Catena, 2023, 231, 107317.
doi: 10.1016/j.catena.2023.107317 |
|
| Zhu E X, Liu T, Zhou L, et al. Leaching of organic carbon from grassland soils under anaerobiosis. Soil Biology and Biochemistry, 2019, 141, 107684. |
| [1] | 胡建文,刘常富,勾蒙蒙,雷蕾,陈会玲,张佳佳,朱粟锋,斛如媛,肖文发. 马尾松人工林土壤有机碳及其组分对林龄的响应及驱动因素[J]. 林业科学, 2025, 61(6): 75-84. |
| [2] | 陈佳宇,李哲瀚,赵平欣,詹笑宇,马远帆,郭福涛. 林火烟气沉降背景下土壤理化性质对杉木挥发性有机物排放特征的影响[J]. 林业科学, 2025, 61(6): 85-98. |
| [3] | 王胤,姚瑞玲,肖玉菲. PBZ/DPC处理对马尾松扦插生根及GAs代谢的影响[J]. 林业科学, 2025, 61(3): 147-157. |
| [4] | 刘明彤,庄和必,王紫彤,石帅宾,刘晓娟,林二培,胡现铬,黄华宏. 杉木次生壁发育调控转录因子基因ClNAC40的生物学功能[J]. 林业科学, 2025, 61(2): 131-141. |
| [5] | 宋成硕,Lim Kean-Jin,林二培,黄华宏. 杉木心边材过渡区ClBFN基因鉴定及解剖特征[J]. 林业科学, 2025, 61(10): 111-120. |
| [6] | 何江,覃林. 气候敏感的杉木天然林林分进界模型[J]. 林业科学, 2025, 61(1): 70-80. |
| [7] | 张时馨,耿阳阳,周汀,王纪辉,胡伯凯,刘亚娜. 橙黄乳菇对马尾松和华山松幼苗生长及根系代谢物的调控[J]. 林业科学, 2024, 60(9): 50-58. |
| [8] | 杨淑雅,王镜如,朱滢滢,伊力塔,刘美华. 杉木与浙江楠混交对根系分泌物和丛枝菌根真菌群落结构的影响[J]. 林业科学, 2024, 60(9): 59-68. |
| [9] | 都亚敏,李珠,蒋佳荔,殷方宇,吕建雄. 吸湿解吸循环过程中木材水分吸附特性[J]. 林业科学, 2024, 60(9): 150-158. |
| [10] | 沈熙为,曾彬,葛梦婷,王敬贤. 基于GC-MS-O技术的景观设计用马尾松木材气味化合物分析[J]. 林业科学, 2024, 60(9): 159-169. |
| [11] | 李媛,李珠,都亚敏,蒋佳荔. 水热环境中马尾松早材和晚材的轴向拉伸力学行为[J]. 林业科学, 2024, 60(8): 184-192. |
| [12] | 李林鑫,杨贵云,郭昊澜,董强,李明,马祥庆,吴鹏飞. 繁殖方式对杉木幼苗根系不同序级生物量、形态性状和碳氮含量的影响[J]. 林业科学, 2024, 60(7): 47-55. |
| [13] | 阮颖超,苏比·热西塔洪,林熙,李明,范少辉,冯随起,陈志云,马祥庆,何宗明. 修枝强度对杉木人工林无节材形成及质量的影响[J]. 林业科学, 2024, 60(6): 50-59. |
| [14] | 刘澳,王嘉铮,卢思航,雷菲娅,宁宏涛,腾渝,李守中. 长汀生态恢复区不同混交比例针阔混交林内马尾松种群动态及其驱动机制[J]. 林业科学, 2024, 60(5): 89-97. |
| [15] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||