林业科学 ›› 2024, Vol. 60 ›› Issue (11): 13-24.doi: 10.11707/j.1001-7488.LYKX20230539
韩新生1,2,3,王彦辉1,*(),于澎涛1,李振华4,于艺鹏1,王晓1
收稿日期:
2023-11-14
出版日期:
2024-11-25
发布日期:
2024-11-30
通讯作者:
王彦辉
E-mail:.wangyh@caf.ac.cn
基金资助:
Xinsheng Han1,2,3,Yanhui Wang1,*(),Pengtao Yu1,Zhenhua Li4,Yipeng Yu1,Xiao Wang1
Received:
2023-11-14
Online:
2024-11-25
Published:
2024-11-30
Contact:
Yanhui Wang
E-mail:.wangyh@caf.ac.cn
摘要:
目的: 分析宁夏六盘山半干旱区叠叠沟小流域华北落叶松人工林林龄、密度和主要立地因子对树高和胸径生长的影响,建立树木生长的多因子响应耦合模型,为该地区华北落叶松人工林生长预测和可持续经营提供理论依据。方法: 2018和2019年,在六盘山半干旱区叠叠沟小流域分别选择42和57块华北落叶松人工林样地,调查树高、胸径、林龄、密度等林分结构特征以及坡向、土壤厚度等立地因子,并收集2003—2017年在叠叠沟小流域调查的93块样地历史数据。基于192块样地数据,分析树高和胸径对林龄、密度、坡向、土壤厚度等因子的响应规律,利用2/3和1/3的数据建立和验证树高与胸径生长的多因子响应耦合模型。结果: 树高和胸径对林龄、密度、坡向、土壤厚度的响应规律各异;树高和胸径随林龄增加先快速增加,后在林龄超过20年时缓慢增加;树高和胸径随密度增加先表现为稳定,后在密度分别超过2 000、1 500株·hm−2时缓慢下降,在密度超过3 000、2 300株·hm−2时加快下降;树高和胸径随坡向偏离正北方向的角度增加先表现为稳定,后在坡向超过80°时迅速降低;树高和胸径随土壤厚度增加先表现为增加,后在土壤厚度分别超过90、80 cm渐趋稳定。基于连乘耦合、立地指数和立地因子3种林木生长模型表达式,建立树高和胸径响应林龄、密度、坡向、土壤厚度和立地指数的耦合模型并拟合模型参数;树高模型的确定系数分别为0.804、0.902、0.806,NS系数分别为0.793、0.903、0.762;胸径模型的确定系数分别为0.846、0.803、0.834,NS系数分别为0.837、0.840、0.818;3种模型拟合效果均较好。结论: 宁夏六盘山半干旱区华北落叶松人工林树高和胸径生长随林龄、密度、坡向、土壤厚度增加分别表现为先快后慢增加、先稳定后下降、先稳定后降低、先升高后稳定,建立的连乘耦合、立地指数和立地因子多因子耦合模型精度均较高,但鉴于研究区尚未确定立地指数分布规律并综合考虑各模型精度、应用难度、结构复杂程度差异,建议采用多因子连乘耦合模型预测华北落叶松人工林树高和胸径生长。
中图分类号:
韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24.
Xinsheng Han,Yanhui Wang,Pengtao Yu,Zhenhua Li,Yipeng Yu,Xiao Wang. Construction of Multi-Factor Response Coupling Models of Tree Height and DBH Growth of Larix principis-rupprechtii Plantations in Northern Liupan Mountains, Ningxia[J]. Scientia Silvae Sinicae, 2024, 60(11): 13-24.
白 羽, 庞 勇, 夏晓运, 等. 长白落叶松解析木数据参数化3-PG模型. 林业科学, 2022, 58 (1): 98- 110. | |
Bai Y, Pang Y, Xia X Y, et al. 3-PG model parameterization using destructive sampling data of Larix olgensis. Scientia Silvae Sinicae, 2022, 58 (1): 98- 110. | |
陈 哲, 魏浩亮, 周庆营, 等. 抚育间伐对华北落叶松人工林林分结构的影响. 中南林业科技大学学报, 2022, 42 (5): 54- 64. | |
Chen Z, Wei H L, Zhou Q Y, et al. Influence of tending and thinning on the stand structure of Larix principis-rupprechtii plantations. Journal of Central South University of Forestry and Technology, 2022, 42 (5): 54- 64. | |
邓秀秀, 王云霓, 王彦辉, 等. 华北落叶松人工林树高和胸径的坡位差异与坡面尺度效应——以六盘山香水河小流域为例. 中南林业科技大学学报, 2016, 36 (5): 121- 128. | |
Deng X X, Wang Y N, Wang Y H, et al. Slope variation and scale effect of tree height and DBH of Larix principis-rupprechtii plantations along a slope: a case study of Xiangshui watershed of Liupan Mountains. Journal of Central South University of Forestry and Technology, 2016, 36 (5): 121- 128. | |
丁继伟, 张芸香, 郭跃东, 等. 华北落叶松天然林密度对林木生长的影响. 山西农业科学, 2018, 46 (6): 981- 985. | |
Ding J W, Zhang Y S, Guo Y D, et al. Effect of natural forest density on forest growth in Larix principis-rupprechtii. Journal of Shanxi Agricultural Sciences, 2018, 46 (6): 981- 985. | |
段光爽, 郑亚丽, 洪 亮, 等. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价. 林业科学, 2022, 58 (10): 1- 9. | |
Duan G S, Zheng Y L, Hong L, et al. A potential productivity-based approach of site quality evaluation for larch pure forest and birch-aspen mixed forest. Scientia Silvae Sinicae, 2022, 58 (10): 1- 9. | |
耿胜慧, 李亚光, 宋 楠. 不同密度和立地因子对密云县橡树次生林生长的影响. 黑龙江农业科学, 2011, (9): 83- 86.
doi: 10.3969/j.issn.1002-2767.2011.09.028 |
|
Geng S H, Li Y G, Song N. Effects of different densities and site conditions on growth of oak secondary forest in Miyun County. Heilongjiang Agricultural Sciences, 2011, (9): 83- 86.
doi: 10.3969/j.issn.1002-2767.2011.09.028 |
|
郭滨德, 张远东, 王晓春. 川西高原不同坡向云、冷杉树轮对快速升温的响应差异. 应用生态学报, 2016, 27 (2): 354- 364. | |
Guo B D, Zhang Y D, Wang X C. Response of Picea purpurea and Abies faxoniana tree rings at different slope aspects to rapid warming in western Sichuan, China. Chinese Journal of Applied Ecology, 2016, 27 (2): 354- 364. | |
郭建军, 郭宾良, 刘海翔, 等. 冀北山地不同坡向华北落叶松人工林生长量分析. 防护林科技, 2021, (2): 23- 25. | |
Guo J J, Guo B L, Liu H X, et al. Growth of Larix principis-rupprechtii plantation at different slope aspects of mountains at northern Hebei Province. Protection Forest Science and Technology, 2021, (2): 23- 25. | |
韩大校, 金光泽. 地形和竞争对典型阔叶红松林不同生长阶段树木胸径生长的影响. 北京林业大学学报, 2017, 39 (1): 9- 19. | |
Han D X, Jin G Z. Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China. Journal of Beijing Forestry University, 2017, 39 (1): 9- 19. | |
韩新生. 2020. 六盘山半干旱区三种典型植被的结构变化及其多功能影响. 北京: 中国林业科学研究院. | |
Han X S. 2020. The strcuture variation and multifunctional effects of three typical vegetations in the semi-arid area of Liupan Mountains. Beijing: Chinese Academy of Forestry. [in Chinese] | |
郝 佳, 熊 伟, 王彦辉, 等. 宁夏六盘山华北落叶松人工林雪害的影响因子. 林业科学, 2012, 48 (7): 1- 7. | |
Hao J, Xiong W, Wang Y H, et al. Factors affecting the snow caused damage of Larix principis-rupprechtii plantation in Liupan Mountains of Ningxia, northwest China. Scientia Silvae Sinicae, 2012, 48 (7): 1- 7. | |
李兵兵, 原民龙, 贾彦龙, 等. 华北落叶松人工林生长规律研究. 河北农业大学学报, 2012, 35 (2): 60- 64,71. | |
Li B B, Yuan M L, Jia Y L, et al. Study on the growth patterns of Larix principis-rupprechtii plantation. Journal of Agricultural University of Hebei, 2012, 35 (2): 60- 64,71. | |
李艳茹, 赵 鹏, 黄永辉, 等. 目标树经营对华北落叶松人工林生长及物种多样性的影响. 东北林业大学学报, 2022, 50 (5): 20- 25. | |
Li Y R, Zhao P, Huang Y H, et al. Growth and species diversity of Larix principis-rupprechtii by target tree management. Journal of Northeast Forestry University, 2022, 50 (5): 20- 25. | |
刘谦和, 车克钧, 常学向. 祁连山北坡立地因子对青海云杉树高生长的相关分析. 甘肃林业科技, 1995, (2): 7- 12. | |
Liu Q H, Che K J, Chang X X. Correlation analysis of site factors and height growth of Picea crassifolia in Qilian Mountains. Journal of Gansu Forestry Science and Technology, 1995, (2): 7- 12. | |
孟宪宇. 2006. 测树学. 3版. 北京: 中国林业出版社. | |
Meng X Y. 2006. Dendrology. 3rd ed. Beijing: China Forestry Publishing House. [in Chinese] | |
彭剑峰, 勾晓华, 陈发虎, 等. 坡向对海拔梯度上祁连圆柏树木生长的影响. 植物生态学报, 2010, 34 (5): 517- 525. | |
Peng J F, Gou X H, Chen F H, et al. Influences of slope aspect on the growth of Sabina przewalskii along an elevation gradient in China’s Qinghai Province. Chinese Journal of Plant Ecology, 2010, 34 (5): 517- 525. | |
桑卫国, 李景文, 陆兆华. 山杨林林分密度效应动态模拟. 植物生态学报, 1998, 22 (5): 58- 64. | |
Sang W G, Li J W, Lu Z H. Dynamics modeling of stand density effects of Populus davidiana forest. Acta Phytoecologica Sinica, 1998, 22 (5): 58- 64. | |
莎仁图雅, 刘 坤, 张翠霞, 等. 阴山中部不同密度华北落叶松人工林林分结构特征研究. 西部林业科学, 2022, 51 (6): 17- 23. | |
Sha-Ren T Y, Liu K, Zhang C X, et al. Stand structure characteristics of Larix principis-rupprechtii plantation with different density in Middle Yinshan Mountain. Journal of West China Forestry Science, 2022, 51 (6): 17- 23. | |
史元春, 赵成章, 宋清华, 等. 兰州北山侧柏株高与冠幅、胸径异速生长关系的坡向差异性. 生态学杂志, 2015, 34 (7): 1879- 1885. | |
Shi Y C, Zhao C Z, Song Q H, et al. Allometric relationship between height and crown width or diameter of Platycladus orientalis on different slope aspects of Lanzhou northern mountains. Chinese Journal of Ecology, 2015, 34 (7): 1879- 1885. | |
田 奥. 2019. 六盘山半湿润区华北落叶松人工林的多种功能时空变化与优化管理. 北京: 中国林业科学研究院. | |
Tian A. 2019. The spatio-temporal variation and optimal management of the multiple functions of larch plantation in the semi-humid Liupan Mountains of northwest China. Beijing: Chinese Academy of Forestry. [in Chinese] | |
王雄宾, 徐成立, 余新晓, 等. 华北落叶松人工林叶面积指数与立地指数、密度、林龄关系模型研究. 中国农学通报, 2015, 31 (22): 21- 25. | |
Wang X B, Xu C L, Yu X X, et al. Study on relationship model of leaf area index and site index, stand age, stand density of Larix principis-rupprechtii plantations. Chinese Agricultural Science Bulletin, 2015, 31 (22): 21- 25. | |
王 雪, 李际平, 曹小玉, 等. 基于林分密度控制图的闽楠人工林全周期经营目标树密度研究. 中南林业科技大学学报, 2021, 41 (9): 71- 78. | |
Wang X, Li J P, Cao X Y, et al. Study on target tree density of Phoebe bournei plantation in full cycle management based on stand density control chart. Journal of Central South University of Forestry and Technology, 2021, 41 (9): 71- 78. | |
王云霓, 高孝威, 苏雅拉巴雅尔, 等. 林分密度和林龄对华北落叶松人工林生长特征的影响. 内蒙古林业科技, 2018, 44 (3): 12- 16. | |
Wang Y N, Gao X W, Suyalabayaer, et al. Effects of different densities and ages on growth of Larix principis-rurechitii plantation in Daqing Mountains of Inner Mongolia. Journal of Inner Mongolia Forestry Science and Technology, 2018, 44 (3): 12- 16. | |
翁国庆. 正常收获表的研制. 东北林业大学学报, 1989, 17 (2): 34- 40. | |
Weng G Q. Research in the construction of normal yield table. Journal of Northeast Forestry University, 1989, 17 (2): 34- 40. | |
杨俊松, 王德炉, 吴春玉, 等. 地形因子对马铃乡马尾松人工林生长的影响. 林业调查规划, 2016, 41 (1): 98- 100. | |
Yang J S, Wang D L, Wu C Y, et al. Effects of different terrain on Pinus massoniana plantation growth in Maling Township. Forest Inventory and Planning, 2016, 41 (1): 98- 100. | |
袁晓红, 李际平. 杉木人工林南北坡向树高-胸径生长曲线研究. 西北林学院学报, 2012, 27 (2): 180- 183.
doi: 10.3969/j.issn.1001-7461.2012.02.36 |
|
Yuan X H, Li J P. Height, DBH growth models of fir artificial forest on northern and southern slopes. Journal of Northwest Forestry University, 2012, 27 (2): 180- 183.
doi: 10.3969/j.issn.1001-7461.2012.02.36 |
|
张二亮, 宫 宇, 陈永军, 等. 华北落叶松生长规律初探. 河北林果研究, 2015, 30 (1): 30- 32. | |
Zhang E L, Gong Y, Chen Y J, et al. Study on growth regularity of Larix principis-rurechitii. Hebei Journal of Forestry and Orchard Research, 2015, 30 (1): 30- 32. | |
张立民, 刘彩虹, 王立辉, 等. 密度对华北落叶松人工林树高、胸径和物种多样性的影响. 河北林果研究, 2015, 30 (1): 1- 4. | |
Zhang L M, Liu C H, Wang L H, et al. The influence of the height of tree, DBH and species diversity of Larix principis-rurechitii about density. Hebei Journal of Forestry and Orchard Research, 2015, 30 (1): 1- 4. | |
张淑兰. 2011. 土地利用和气候变化对流域水文过程影响的定量评价. 北京: 中国林业科学研究院. | |
Zhang S L. 2011. The assessment of impact of land use change and climate variability on hydrological process in basin. Beijing: Chinese Academy of Forestry. [in Chinese] | |
郑万钧, 傅立国. 1978. 中国植物志 .7卷: 裸子植物门. 北京: 科学出版社. | |
Zheng W J, Fu L G. 1978. Flora Reipublicae Popularis Sinicae. Vol. 7: Gymnospermae. Beijing: Science Press. [in Chinese] | |
Ahmad B, Wang Y H, Hao J, et al. Optimizing stand structure for trade-offs between overstory timber production and understory plant diversity: a case-study of a larch plantation in northwest China. Land Degradation and Development, 2018, 29 (9): 2998- 3008.
doi: 10.1002/ldr.3070 |
|
Binkley D. A hypothesis about the interaction of tree dominance and stand production through stand development. Forest Ecology and Management, 2003, 190 (2): 265- 271. | |
Bullock S H. Developmental patterns of tree dimensions in a neotropical deciduous forest. Biotropica, 2000, 32 (1): 42- 52.
doi: 10.1111/j.1744-7429.2000.tb00446.x |
|
Calama R, Canadas N, Montero G. Inter-regional variability in site index models for even-aged stands of stone pine (Pinus pinea L.) in Spain. Annals of Forest Science, 2003, 60 (3): 221- 228. | |
Caldwell K, Shifflett L. The law of constant final yield and density-dependent effects on Raphinus sativus. Neurochirurgia, 1992, 15, 54- 62. | |
Carmean W H. Site index curves for upland oaks in the Central States. Forest Science, 1972, 18 (2): 109- 120. | |
Clerx L E, Rockwell F E, Savage J A, et al. Ontogenetic scaling of phloem sieve tube anatomy and hydraulic resistance with tree height in Quercus rubra. American Journal of Botany, 2020, 107 (6): 1- 12. | |
Coomes DA, Allen R B. Effects of size, competition and altitude on tree growth. Journal of Ecology, 2007, 95, 1084- 1097.
doi: 10.1111/j.1365-2745.2007.01280.x |
|
Copenhaver P E, Tinker D B. Stand density and age affect tree-level structural and functional characteristics of young, postfire lodgepole pine in Yellowstone National Park. Forest Ecology and Management, 2014, 320, 138- 148.
doi: 10.1016/j.foreco.2014.03.024 |
|
Ercanli I. Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height. Forest Ecosystems, 2020, 7 (2): 3- 20. | |
Fu B. SImulation of the spatial distribution of climatic element in mountain regions. Acta Meteorologica Sinica, 1989, 3, 669- 676. | |
Fu L Y, Sharma R P, Zhu G Y, et al. A basal area increment-based approach of site productivity evaluation for multi-aged and mixed forests. Forests, 2017, 8 (4): 119- 136.
doi: 10.3390/f8040119 |
|
Gadow K V, Hui G. Modelling forest development. Forestry Sciences, 1999, 57 (12): 1146- 1158. | |
Gupta R, Sharma L K. The process-based forest growth model 3-PG for use in forest management: a review. Ecological Modelling, 2019, 397, 55- 73.
doi: 10.1016/j.ecolmodel.2019.01.007 |
|
He F L, Duncan R P. Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecology, 2000, 88 (4): 676- 688.
doi: 10.1046/j.1365-2745.2000.00482.x |
|
Hemingway H, Kimsey M. A multipoint felled-tree validation of height-age modeled growth rates. Forest Science, 2020, 66 (3): 275- 283.
doi: 10.1093/forsci/fxz090 |
|
Hewlett J D, Hibbert A R. Moisture and energy conditions within a sloping soil mass during drainage. Journal of Geophysical Research, 1963, 68 (4): 1081- 1087.
doi: 10.1029/JZ068i004p01081 |
|
Huang S M, Price D, Titus S J. Development of ecoregion-based height-diameter models for white spruce in boreal forests. Forest Ecology and Management, 2000, 129 (1/2/3): 125- 141. | |
Landsberg J J, Waring R H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitoning. Forest Ecology and Management, 1997, 95 (3): 209- 228.
doi: 10.1016/S0378-1127(97)00026-1 |
|
Li F R, Wang Y H, Hou L J. Comparison of the Chapman-Richards function with the Schnute model in stand growth. Journal of Forestry Research, 1997, 8 (3): 137- 143.
doi: 10.1007/BF02855405 |
|
Malhi Y, Silman M, Salinas N, et al. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology, 2010, 16, 3171- 3175.
doi: 10.1111/j.1365-2486.2010.02323.x |
|
Matsushita M, Takata K, Hitsuma G, et al. A novel growth model evaluating age-size effect on long-term trends in tree growth. Functional Ecology, 2015, 29 (10): 1250- 1259.
doi: 10.1111/1365-2435.12416 |
|
Mcnab W H, Keyser T L. A vegetative index of stand productivity based on tree inventory for predicting oak site index in the Central Hardwood Region. Canadian Journal of Forest Research, 2020, 50 (8): 760- 773.
doi: 10.1139/cjfr-2019-0412 |
|
Meerveld H J, Mcdonnell J J. On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hillslope scale. Advances in Water Resources, 2006, 29 (2): 293- 310.
doi: 10.1016/j.advwatres.2005.02.016 |
|
Moser G, Röderstein M, Soethe N, et al. 2008. Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry//Beck E. et al. eds. Gradients in a tropical mountain ecosystem of Ecuador. Berlin: Springer-Verlag, 229−242. | |
Mowbray T B, Oosting H J. Vegetation gradients in relation to environment and phenology in a southern Blue Ridge gorge. Ecological Monographs, 1968, 38 (4): 309- 344.
doi: 10.2307/1948531 |
|
Nascimento R G M, Vanclay J K, Filho A F, et al. 2020. The tree height estimated by non-power models on volumetric models provides reliable predictions of wood volume: the Amazon species height modelling issue. Trees, Forests and People, 2: 100028. | |
Primiciaa I, Camarerob J J, Jandaa P, et al. Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 2015, 354, 77- 86.
doi: 10.1016/j.foreco.2015.06.034 |
|
Pretzsch H, Biber P. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Canadian Journal of Forest Research, 2010, 40 (2): 370- 384.
doi: 10.1139/X09-195 |
|
Rohner B, Bugmann H, Bigler C. Estimating the age–diameter relationship of oak species in Switzerland using nonlinear mixed-effects models. European Journal of Forest Research, 2013, 132 (5): 751- 764. | |
Ryan M G, Yoder B J. Hydraulic limits to tree height and tree growth. Bioscience, 1997, 47 (4): 235- 242.
doi: 10.2307/1313077 |
|
Qiu H Q, Liu S, Zhang Y T, et al. Variation in height-diameter allometry of ponderosa pine along competition, climate, and species diversity gradients in the western United States. Forest Ecology and Management, 2021, 497, 119477. | |
Schmidt U, Hanspeter T, Kaupenjohann M. Using a boundary line approach to analyze N2O flux data from agricultural soils. Nutrient Cycling in Agricultural Ecosystems, 2000, 57 (2): 119- 129.
doi: 10.1023/A:1009854220769 |
|
Smith F W, Long J N. Age-related decline in forest growth: an emergent property. Forest Ecology and Management, 2001, 144 (1): 175- 181. | |
Vandekerkhove K, Vanhellemont M, Vrška T, et al. Very large trees in a lowland old-growth beech (Fagus sylvatica L.) forest: density, size, growth and spatial patterns in comparison to reference sites in Europe. Forest Ecology and Management, 2018, 417, 1- 17.
doi: 10.1016/j.foreco.2018.02.033 |
|
Wassihun A N. Sensitivity of above-ground biomass to terrestrial LIDAR-derived tree height in Berkelah tropical rainforest, Malaysia. Journal of the Indian Society of Remote Sensing, 2019, 47 (5): 789- 799.
doi: 10.1007/s12524-019-00956-0 |
|
Weiner J, Thomas S C. The nature of tree growth and the “age-related decline in forest productivity”. Oikos, 2001, 94 (2): 374- 376.
doi: 10.1034/j.1600-0706.2001.940219.x |
|
Xiang W H, Li L H, Ouyang S, et al. Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. European Journal of Forest Research, 2021, 140 (2): 317- 332.
doi: 10.1007/s10342-020-01333-0 |
|
Yang Y, Titus S J. Maximum size-density relationship for constraining individual tree mortality functions. Forest Ecology and Management, 2002, 168 (1): 259- 273. | |
Zhu L W, Hu Y T, Zhao P. Interspecific variations in tree allometry and functional traits in subtropical plantations in southern China. Functional Plant Biology, 2020, 47, 558- 564.
doi: 10.1071/FP19325 |
[1] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[2] | 刘相荣,孙启武,厚凌宇,庞忠义,张琰琳,丁昌俊. 松辽平原杨树人工林土壤微生物群落结构及其功能多样性的林龄差异[J]. 林业科学, 2024, 60(11): 25-36. |
[3] | 龙时胜, 曾思齐, 杨盛扬. 基于改进林分密度指数的栎类天然林最大密度线[J]. 林业科学, 2023, 59(9): 13-22. |
[4] | 王彦辉,于澎涛,田奥,韩新生,郝佳,刘泽彬,王晓. 黄土高原和六盘山区的林水协调多功能管理[J]. 林业科学, 2023, 59(4): 1-17. |
[5] | 李平平,王彦辉,段文标,王依瑞,于澎涛,甄理,李志鑫,尚会军,史再军,于艺鹏. 黄土高原刺槐人工林立地指数变化及评价[J]. 林业科学, 2023, 59(4): 18-31. |
[6] | 张紫优,王彦辉,田奥,刘泽彬,郭建斌,于澎涛,王晓,于艺鹏. 宁夏六盘山华北落叶松人工林植被碳密度时空特征及其环境响应[J]. 林业科学, 2023, 59(4): 32-45. |
[7] | 周小成, 黄婷婷, 李媛, 肖祥希, 朱洪如, 陈芸芝, 冯芝淸. 结合遥感林龄因子的亚热带森林蓄积量估算方法[J]. 林业科学, 2023, 59(4): 88-99. |
[8] | 罗斯生,罗碧珍,魏书精,胡海清,李小川,王振师,周宇飞,宋兆,钟映霞. 中度火灾一年后马尾松林土壤碳库特征[J]. 林业科学, 2022, 58(9): 25-35. |
[9] | 陈嘉琪,赵光宇,李仰龙,董玉红,厚凌宇,焦如珍. 杉木人工林土壤磷素形态及含量的林龄变化[J]. 林业科学, 2022, 58(5): 10-17. |
[10] | 付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测[J]. 林业科学, 2022, 58(2): 32-41. |
[11] | 王淑真,梁晶晶,包明琢,潘菲,周垂帆. 不同林龄杉木林土壤磷形态与解磷菌变化[J]. 林业科学, 2022, 58(2): 58-69. |
[12] | 张晓红,周超凡,张状,冯林艳,王利华,符利勇,谭炳香. 崇礼冬奥核心区华北落叶松人工林结构特征与优化模拟[J]. 林业科学, 2022, 58(10): 79-88. |
[13] | 李文博,吕振刚,黄选瑞,张志东. 河北省北部华北落叶松人工林立地指数空间分布预测[J]. 林业科学, 2021, 57(3): 79-89. |
[14] | 刘悦,谢玲芝,张彦东,王政权,谷加存. 不同密度水曲柳人工林细根生物量对邻近树木胸径和距离的响应[J]. 林业科学, 2021, 57(10): 15-22. |
[15] | 赵珮杉,郭米山,高广磊,丁国栋,张英. 科尔沁沙地樟子松根内真菌群落结构和功能群特征[J]. 林业科学, 2020, 56(9): 87-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||