林业科学 ›› 2024, Vol. 60 ›› Issue (11): 128-138.doi: 10.11707/j.1001-7488.LYKX20230559
李美琪,刘美玲*,王璇,刘湘南,吴伶,李军集
收稿日期:
2023-11-22
出版日期:
2024-11-25
发布日期:
2024-11-30
通讯作者:
刘美玲
基金资助:
Meiqi Li,Meiling Liu*,Xuan Wang,Xiangnan Liu,Ling Wu,Junji Li
Received:
2023-11-22
Online:
2024-11-25
Published:
2024-11-30
Contact:
Meiling Liu
摘要:
目的: 受病虫害胁迫诱导的微弱光谱信号极易淹没在植被物候引起的光谱变化特征中,探索一种基于植被胁迫光谱弱信号增强的森林病虫害监测方法,为森林病虫害防治与管理提供科学依据。方法: 以八角林为研究对象,选取广西壮族自治区乐业县为试验区,收集2019—2021年试验区Sentinel-2影像数据,首先选取对植被病虫害胁迫响应敏感的红边归一化差异植被指数(NDVI705)、红边位置指数(REPI)、红边叶绿素指数(CIred-edge)、植被衰减指数(PSRI)、特征色素简单比值指数(PSSRA)、植被光合有效辐射吸收系数(FAPAR)作为八角林病虫害指数的预选集;其次采用S-G滤波法构建光谱指数时间序列曲线,优选出能够综合表征八角林病虫害胁迫诱导的形态颜色和生理要素变化敏感的PSRI和FAPAR指数;然后应用季节趋势分解法(STL)对FAPAR、PSRI指数进行时间序列分解、季节性分量剥离,综合剥离季节性影响后的FAPAR、PSRI分量构建八角林病虫害敏感指数(IPDI);最后运用随机森林算法建立八角林病虫害胁迫监测模型。结果: 1) 与健康植被相比,受病虫害胁迫的八角林FAPAR偏低、PSRI偏高;2) 应用STL方法对植被病虫害胁迫响应敏感参数进行时间序列分解,可有效剥离植被物候变化中对植被胁迫弱信息的影响,增强八角林病虫害胁迫响应敏感性;3) 基于IPDI的八角林病虫害遥感识别模型精度较高,2019—2021年模型的Kappa系数和总体精度分别为0.81、0.84、0.80和87.59%、88.51%、84.17%,2020年八角林遥感计算的病虫害胁迫受害面积与统计受灾面积的相对误差为2.08%。结论: 基于植被胁迫光谱弱信号增强方法可有效监测八角林病虫害胁迫分布状况,显著提升防治效率,助力八角林的可持续管理与生态保护。
中图分类号:
李美琪,刘美玲,王璇,刘湘南,吴伶,李军集. 八角林病虫害遥感识别模型[J]. 林业科学, 2024, 60(11): 128-138.
Meiqi Li,Meiling Liu,Xuan Wang,Xiangnan Liu,Ling Wu,Junji Li. Remote Sensing Recognition Model of Illicium verum Forest Pests and Diseases[J]. Scientia Silvae Sinicae, 2024, 60(11): 128-138.
表1
八角林病虫害受害程度分级标准"
受害程度Damage degree | 分级标准 Classification standard |
健康Healthy | 植株健康,基本无受害情况 The plants are healthy, with negligible signs of damage |
轻度Mild | 植株枝、叶轻度受损,病害率小于15%;虫口密度每株5~13条 The plants show minor branch and leaf damage, with a disease incidence of less than 15%, and an insect density of 5 to 13 per plant |
中度Moderate | 植株枝、叶明显受损,病害率在15%-45%之间;虫口密度每株14~30条 The plants show substantial branch and leaf damage, with a disease incidence between 15% and 45%, and an insect density of 14 to 30 per plant |
重度Severe | 植株枝、叶严重受损,病害率大于45%;虫口密度每株31条以上 The plants show severe branch and leaf damage, with a disease incidence exceeding 45%, and an insect density of over 31 per plant |
表2
植被病虫害响应敏感指数"
光谱指数 Spectra index | 全称 Full name | 表达式 Formula | 参考文献 Reference |
NDVI705 | 红边归一化差异植被指数Normalized difference vegetation index[705,750] | ||
REPI | 红边位置指数Red edge position index | ||
CIred-edge | 红边叶绿素指数Chlorophyll reflectance red-edge index | ||
PSRI | 植被衰减指数Plant senescence reflectance index | ||
PSSRA | 特征色素简单比值指数 Pigment specific simple ratio chlorophyll index | ||
FAPAR | 植被光合有效辐射吸收系数Fraction of absorbed photosynthetically active radiation | 欧空局SNAP开源平台反演European Space Agency SNAP open source platform inversion |
丁红波, 王珍珠, 刘 东. 激光雷达信号去噪方法的对比研究. 光学学报, 2021, 41 (24): 9- 18. | |
Ding H B, Wang Z Z, Liu D. Comparison of de-noising methods of LiDAR signal. Acta Optica Sinica, 2021, 41 (24): 9- 18. | |
方中达. 1979. 植病研究方法. 北京: 农业出版社. | |
Fang Z D. 1979. Research methods of plant diseases. Beijing: Agricultural Press. [in Chinese] | |
黄旭影, 许章华, 林 璐, 等. 基于毛竹叶片理化参数的刚竹毒蛾危害检测研究. 光谱学与光谱分析, 2019, 39 (3): 857- 864. | |
Huang X Y, Xu Z H, Lin L, et al. Pantana phyllostachysae Chao damage detection based on physical and chemical parameters of moso bamboo leaves. Spectroscopy and Spectral Analysis, 2019, 39 (3): 857- 864. | |
黄旭影, 许章华, 王小平, 等. 刚竹毒蛾危害下的毛竹叶片光谱特征及虫害等级检测研究. 光谱学与光谱分析, 2021, 41 (4): 1253- 1259. | |
Huang X Y, Xu Z H, Wang X P, et al. Spectral characteristics of moso bamboo leaves damaged by Pantana phyllostachysae Chao and monitoring of pest rating. Spectroscopy and Spectral Analysis, 2021, 41 (4): 1253- 1259. | |
竞 霞, 邹 琴, 白宗璠, 等. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展. 作物学报, 2021, 47 (11): 2067- 2079. | |
Jing X, Zou Q, Bai Z F, et al. Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data. Acta Agronomica Sinica, 2021, 47 (11): 2067- 2079. | |
李卫国, 黄文江, 董莹莹, 等. 基于温湿度与遥感植被指数的冬小麦赤霉病估测. 农业工程学报, 2017, 33 (23): 203- 210.
doi: 10.11975/j.issn.1002-6819.2017.23.026 |
|
Li W G, Huang W J, Dong Y Y, et al. Estimation on winter wheat scab based on combination of temperature, humidity and remote sensing vegetation index. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (23): 203- 210.
doi: 10.11975/j.issn.1002-6819.2017.23.026 |
|
梁 栋, 杨勤英, 黄文江, 等. 2015. 基于小波变换与支持向量机回归的冬小麦叶面积指数估算. 红外与激光工程, 44(1): 335-340. | |
Liang D, Yang Q Y, Huang W J, et al. 2015. Estimation of leaf area index based on wavelet transform and support vector machine regression in winter wheat. Infrared and Laser Engineering, 44(1): 335. [in Chinese] | |
马 爽, 韩 阳, 黄梦雪, 等. 基于不同植被指数的植被-土壤混合像元高光谱偏振信息与模型研究. 光谱学与光谱分析, 2017, 37 (11): 3549- 3556. | |
Ma S, Han Y, Huang M X, et al. Study on information and model of high polarization hyperspectral about vegetation-soil mixed pixels based on different vegetation indices. Spectroscopy and Spectral Analysis, 2017, 37 (11): 3549- 3556. | |
宁鸿章, 谭 鑫, 李宇航, 等. 空-谱维联合Savitzky-Golay高光谱滤波算法及其应用. 光谱学与光谱分析, 2020, 40 (12): 3699- 3704. | |
Ning H Z, Tan X, Li Y H, et al. Joint space-spectrum SG filtering algorithms for hyperspectral images and its application. Spectroscopy and Spectral Analysis, 2020, 40 (12): 3699- 3704. | |
彭隆赞, 金时超, 孟凡凡, 等. 马尾松毛虫危害程度的高光谱监测方法. 湖北林业科技, 2017, 46 (3): 1- 6.
doi: 10.3969/j.issn.1004-3020.2017.03.002 |
|
Peng L Z, Jin S C, Meng F F, et al. Monitoring Dendrolimus punctatus harmed on Pinus massoniana with hyperspectral data. Hubei Forestry Science and Technology, 2017, 46 (3): 1- 6.
doi: 10.3969/j.issn.1004-3020.2017.03.002 |
|
田开慧, 陈怡帆, 周宏威. 湖南湘西州马尾松毛虫和松材线虫病发生非线性建模与预测. 森林工程, 2022, 38 (6): 38- 44. | |
Tian K H, Chen Y F, Zhou H W. Prediction of occurrence trend of Dendrolimus punctatus and pine wilt disease in Xiangxi Prefecture. Forest Engineering, 2022, 38 (6): 38- 44. | |
吴项乾, 曹 林, 申 鑫, 等. 基于无人机激光雷达的银杏人工林有效叶面积指数估测. 林业科学, 2020, 56 (1): 74- 86.
doi: 10.11707/j.1001-7488.20200108 |
|
Wu X Q, Cao L, Shen X, et al. Estimation of effective leaf area index using UAV-based LiDAR in Ginkgo plantations. Scientia Silvae Sinicae, 2020, 56 (1): 74- 86.
doi: 10.11707/j.1001-7488.20200108 |
|
许章华, 黄旭影, 林 璐, 等. 基于Fisher判别分析与随机森林的马尾松毛虫害检测. 光谱学与光谱分析, 2018, 38 (9): 2888- 2896. | |
Xu Z H, Huang X Y, Lin L, et al. Dendrolimus punctatus walker damage detection based on fisher discriminant analysis and random forest. Spectroscopy and Spectral Analysis, 2018, 38 (9): 2888- 2896. | |
杨国胜. 八角树常见病虫害防治措施探讨. 南方农业, 2022, 16 (10): 40- 42, 46. | |
Yang G S. Discussion on control measures of common pests and diseases of Illicium verum. South China Agriculture, 2022, 16 (10): 40- 42, 46. | |
赵晋陵, 金 玉, 叶回春, 等. 基于无人机多光谱影像的槟榔黄化病遥感监测. 农业工程学报, 2020, 36 (8): 54- 61.
doi: 10.11975/j.issn.1002-6819.2020.08.007 |
|
Zhao J L, Jin Y, Ye H C, et al. Remote sensing monitoring of Areca yellow leaf disease based on UAV multi-spectral images. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (8): 54- 61.
doi: 10.11975/j.issn.1002-6819.2020.08.007 |
|
张 凝, 杨贵军, 赵春江, 等. 作物病虫害高光谱遥感进展与展望. 遥感学报, 2021, 25 (1): 403- 422.
doi: 10.11834/jrs.20210196 |
|
Zhang N, Yang G J, Zhao C J, et al. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests. National Remote Sensing Bulletin, 2021, 25 (1): 403- 422.
doi: 10.11834/jrs.20210196 |
|
朱建军, 周靖鸿, 周 璀, 等. 一种新的去除遥感影像混合噪声组合滤波方法. 武汉大学学报(信息科学版), 2017, 42 (3): 348- 354. | |
Zhu J J, Zhou J H, Zhou C, et al. A new combination filtering method to remove mixed noise of remote sensing images. Geomatics and Information Science of Wuhan University, 2017, 42 (3): 348- 354. | |
朱 帅, 王金聪, 任洪娥, 等. 基于多特征融合的残差网络果树叶片病害识别. 森林工程, 2022, 38 (1): 108- 114, 123. | |
Zhu S, Wang J C, Ren H E, et al. Fruit tree leaf disease recognition based on residual network and multi feature fusion. Forest Engineering, 2022, 38 (1): 108- 114, 123. | |
Abdullah H, Darvishzadeh R, Skidmore A K, et al. European spruce bark beetle (Ips typographus L. ) green attack affects foliar reflectance and biochemical properties. International Journal of Applied Earth Observation and Geoinformation, 2018, 64, 199- 209.
doi: 10.1016/j.jag.2017.09.009 |
|
Alakus C, Larocque D, Labbe A. Covariance regression with random forests. BMC Bioinformatics, 2023, 24 (1): 258.
doi: 10.1186/s12859-023-05377-y |
|
Bárta V, Lukeš P, Homolová L. Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2. International Journal of Applied Earth Observation and Geoinformation, 2021, 100, 102335.
doi: 10.1016/j.jag.2021.102335 |
|
Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of Remote Sensing, 1998, 19 (4): 657- 675.
doi: 10.1080/014311698215919 |
|
Choi W I, Park Y S. Monitoring, assessment and management of forest insect pests and diseases. Forests, 2019, 10 (10): 865.
doi: 10.3390/f10100865 |
|
Cleveland R B, Cleveland W S. STL: a seasonal-trend decomposition procedure based on loess. Journal of Official Statistics, 1990, 6 (1): 3- 73. | |
Duarte A, Borralho N, Cabral P, et al. Recent advances in forest insect pests and diseases monitoring using UAV-based data: a systematic review. Forests, 2022, 13 (6): 911.
doi: 10.3390/f13060911 |
|
Frampton W J, Dash J, Watmough G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82, 83- 92.
doi: 10.1016/j.isprsjprs.2013.04.007 |
|
Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 1999, 143 (1): 105- 117.
doi: 10.1046/j.1469-8137.1999.00424.x |
|
Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 2003, 160 (3): 271- 282.
doi: 10.1078/0176-1617-00887 |
|
Gitelson A, Arkebauer T, Viña A, et al. Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region. Remote Sensing of Environment, 2021, 258, 112401.
doi: 10.1016/j.rse.2021.112401 |
|
Jiang X P, Zhen J N, Miao J, et al. Assessing mangrove leaf traits under different pest and disease severity with hyperspectral imaging spectroscopy. Ecological Indicators, 2021, 129, 107901.
doi: 10.1016/j.ecolind.2021.107901 |
|
Lai J L, Bai C H, Pan J M, et al. 2023. Colletotrichum horii and Colletotrichum fioriniae causing anthracnose on star anise (Illicium verum) in China. Plant Disease, https://doi.org/10.1094/PDIS-04-23-0640-PDN. | |
Long L, Chen Y Y, Song S J, et al. Remote sensing monitoring of pine wilt disease based on time-series remote sensing index. Remote Sensing, 2023, 15 (2): 360.
doi: 10.3390/rs15020360 |
|
Luo F Y, Huang M, Liu H, et al. Root rot Caused by Setophoma terrestris on Illicium verum in Yunnan Province, China. Plant Disease, 2023, 107 (8): 2518. | |
Ma H Q, Jing Y S, Huang W J, et al. Integrating early growth information to monitor winter wheat powdery mildew using multi-temporal landsat-8 imagery. Sensors, 2018, 18 (10): 3290.
doi: 10.3390/s18103290 |
|
Merzlyak M N, Gitelson A A, Chivkunova O B, et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 1999, 106 (1): 135- 141.
doi: 10.1034/j.1399-3054.1999.106119.x |
|
Naboureh A, Ebrahimy H, Azadbakht M, et al. RUESVMs: an ensemble method to handle the class imbalance problem in land cover mapping using google earth engine. Remote Sensing, 2020, 12 (21): 3484.
doi: 10.3390/rs12213484 |
|
Qin B X, Sun F G, Shen W X, et al. Deep learning-based pine nematode trees’ identification using multispectral and visible UAV imagery. Drones, 2023, 7 (3): 183.
doi: 10.3390/drones7030183 |
|
Sellers P J, Dickinson R E, Randall D A, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 1997, 275 (5299): 502- 509.
doi: 10.1126/science.275.5299.502 |
|
Shi Y, Huang W J, González-Moreno P, et al. Wavelet-based rust spectral feature set (WRSFs): a novel spectral feature set based on continuous wavelet transformation for tracking progressive host-pathogen interaction of yellow rust on wheat. Remote Sensing, 2018, 10 (4): 525.
doi: 10.3390/rs10040525 |
|
Wang S Y, Liu M L, Li Y M, et al. Spatiotemporal cube model based on stress features for identification of heavy metal stress in rice. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 4401313. | |
Wu M W, Luo Y L, Chen F, et al. Observed link of extreme hourly precipitation changes to urbanization over coastal south China. Journal of Applied Meteorology and Climatology, 2019, 58 (8): 1799- 1819.
doi: 10.1175/JAMC-D-18-0284.1 |
|
Zhang B Y, Ye H C, Lu W, et al. A spatiotemporal change detection method for monitoring pine wilt disease in a complex landscape using high-resolution remote sensing imagery. Remote Sensing, 2021, 13 (11): 2083.
doi: 10.3390/rs13112083 |
|
Zhang J C, Huang Y B, Pu R L, et al. Monitoring plant diseases and pests through remote sensing technology: a review. Computers and Electronics in Agriculture, 2019, 165, 104943.
doi: 10.1016/j.compag.2019.104943 |
|
Zhang J C, Wang N, Yuan L, et al. Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements. Biosystems Engineering, 2017, 162, 20- 29.
doi: 10.1016/j.biosystemseng.2017.07.003 |
|
Zimmermann S, Hoffmann K. Evaluating the capabilities of Sentinel-2 data for large-area detection of bark beetle infestation in the Central German Uplands. Journal of Applied Remote Sensing, 2020, 14 (2): 024515. |
[1] | 石永磊,王志慧,李世明,李春意,肖培青,张攀,常晓格. 基于光学遥感的稀疏乔灌木地上部分生物量反演方法[J]. 林业科学, 2022, 58(2): 13-22. |
[2] | 郭旭展,陈巧,张晓芳,洪亮,尤媛媛,唐守正,符利勇. 基于无人机高分辨率影像的油松新造林健康树冠提取[J]. 林业科学, 2022, 58(10): 111-120. |
[3] | 李文敏, 魏虹, 李昌晓, 陈存根. 基于高光谱参数的枫杨叶绿素含量估算模型优化[J]. 林业科学, 2014, 50(4): 55-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||