林业科学 ›› 2023, Vol. 59 ›› Issue (6): 36-47.doi: 10.11707/j.1001-7488.LYKX20220701
收稿日期:
2022-10-19
出版日期:
2023-06-25
发布日期:
2023-08-08
通讯作者:
王树凤
E-mail:shuwanqin2022@163.com;wangshufeng6609@163.com
基金资助:
Wanqin Shu1,3(),Guangcai Chen1,Jiwu Cao3,Shufeng Wang1,2,*(
)
Received:
2022-10-19
Online:
2023-06-25
Published:
2023-08-08
Contact:
Shufeng Wang
E-mail:shuwanqin2022@163.com;wangshufeng6609@163.com
摘要:
目的: 探究杞柳4个栽培品种在重金属镉(Cd)胁迫下的离子组响应特征,为选育高Cd富集型杞柳、提高杞柳对重金属污染土壤的修复效率提供理论依据。方法: 采用水培试验,分析杞柳4个品种‘大红头’、‘大青皮’、‘黄皮柳’、‘庄坞柳’在0、10、50 μmol·L?1的Cd(NO3)2处理下根、插条、新枝和叶组织Cd、大量元素(N、P、K、Ca、Mg)、微量元素(Fe、Zn、Cu、Mn、Mo、Se)含量变化,结合主成分分析、相关性分析以及偏最小二乘回归分析,明确Cd胁迫下杞柳不同组织离子组变异的元素贡献以及影响杞柳Cd积累和转运的主要元素。结果: 1) 大量元素特别是N的变异系数明显小于其他元素,叶片Cd变异系数明显高于其他组织;Mn、Zn和Fe等二价阳离子在Cd胁迫下的变异系数均较高。2) 杞柳离子组总变异的78.3%由组织类型的差异导致,其中Zn、Fe、Cu、Mn和Mo是杞柳离子组变异的重要组成部分。 3) Cd胁迫对不同组织离子组干扰程度为:根>叶>新枝>插条。4) 相关性分析发现,叶片Cd含量与Fe和Mg呈显著正相关;新枝和插条Cd含量与N和Se呈显著正相关;根部Cd含量与Ca、Cu和Se呈显著正相关。聚类分析和偏最小二乘回归确定N、P、Ca、K、Mn、Fe、Mg和Mo等元素在杞柳转运Cd的过程中起重要作用。结论: Cd胁迫导致的杞柳离子组变异,主要来源于组织类型的差异;同一组织中,离子组的变异主要来源于Cd胁迫,不同组织中引起离子组变异的主要元素各不相同。Cd在杞柳体内的转运受离子组变异影响,其中的大量元素N、P、K、Ca、Mg,微量元素Mn、Fe和Mo在杞柳转运Cd的过程中起重要作用。
中图分类号:
舒婉钦,陈光才,曹基武,王树凤. 镉胁迫诱导的杞柳组织离子组变异及其对镉运输的影响[J]. 林业科学, 2023, 59(6): 36-47.
Wanqin Shu,Guangcai Chen,Jiwu Cao,Shufeng Wang. Cadmium Stress-Induced Variation in Ionome in Different Tissues of Salix integra and Its Impact on Cadmium Transport[J]. Scientia Silvae Sinicae, 2023, 59(6): 36-47.
图1
不同物质的量浓度Cd处理下杞柳不同组织离子组元素变异的Z值评价 A、B、C和D分别为叶片、新枝、插条和根的离子组各元素变异的Z值。 CK:0 μmol·L?1 Cd处理;、T1:10 μmol·L?1 Cd处理;T2:50 μmol·L?1 Cd处理。A, B, C and D are Z values of inomic variation in leaves, new branch, cutting and root, respectively. CK: 0 μmol·L?1 Cd treatment; T1: 10 μmol·L?1 Cd treatment; T2: 50 μmol·L?1 Cd treatment."
安婷婷, 黄 帝, 王 浩, 等. 植物响应镉胁迫的生理生化机制研究进展. 植物学报, 2021, 56 (3): 347- 362. | |
An T T, Huang D, Wang H, et al. Research advances in plant physiological and biochemical mechanisms in response to cadmium stress. Chinese Bulletin of Botany, 2021, 56 (3): 347- 362. | |
陈久耿, 晁代印. 2014. 矿质元素互作及重金属污染的研究进展. 植物生理学报, 50(5): 585–590. | |
Chen J G, Chao D Y. 2014. Advances in mineral element interactions and heavy metal pollution, Plant Physiology Journal, 50(5): 585–590.[in Chinese] | |
杜文琪. 2018. 外源镁对镉在稻田系统中生物有效性与转运累积的影响. 长沙: 中南林业科技大学. | |
Du W Q. 2018. Effects exogenous magnesium on bioavailability, transportation and accumulation of cadmium in rice-soil systems. Changsha: Central South University of Forestry and Technology.[in Chinese] | |
顾天宇, 龚韵秋, 张国斌, 等. 2020. 植被宏离子组分析方法的建立及重金属污染的监测应用. 植物生理学报, 56(3): 583–589. | |
Gu T Y, Gong Y Q, Zhang G B, et al, 2020. Development and application of the meta-ionomic assay to identify heavy metal pollution. Plant Physiology Journal, 56(3): 583–589.[in Chinese] | |
何小林, 关美艳, 范士凯, 等. 矿质营养元素阻控植物镉积累: 从机制到应用. 浙江大学学报(农业与生命科学版), 2017, 43 (6): 747- 756. | |
He X L, Guan M Y, Fan S K, et al. Prevention of cadmium accumulation in plants by mineral nutrients: from mechanisms to applications. Journal of Zhejiang University (Agric. & Life Sci. ), 2017, 43 (6): 747- 756. | |
赖金龙. 2021. 甘薯块根对铀/镉吸收、转运、微区分布及逆境生理响应机制. 绵阳: 西南科技大学. | |
Lai J L. 2021. Uptake, transport, distribution and physiological response mechanism of sweet potato to U & Cd contamination. Mianyang: Southwest University of Science and Technology.[in Chinese] | |
刘 畅, 徐应明, 黄青青, 等. 不同冬小麦品种镉富集转运及离子组特征差异. 环境科学, 2022, 43 (3): 1596- 1605.
doi: 10.13227/j.hjkx.202107062 |
|
Liu C, Xu Y M, Huang Q Q, et al. Variations in cadmium accumulation and transport and ionomic traits among different winter wheat varieties. Environmental Science, 2022, 43 (3): 1596- 1605.
doi: 10.13227/j.hjkx.202107062 |
|
尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析. 环境科学, 2018, 39 (10): 4670- 4683.
doi: 10.13227/j.hjkx.201802139 |
|
Shang E P, Xu E Q, Zhang H Q, et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China. Environmental Science, 2018, 39 (10): 4670- 4683.
doi: 10.13227/j.hjkx.201802139 |
|
沙之敏, 赵 峥, 卢琳芳, 等. 2017. 植物离子组学研究进展. 植物营养与肥料学报, 23(5): 1370–1377. | |
Sha Z M, Zhao Z, Lu L F, et al. Research progress on ionomics of plants. Journal of Plant Nutrition and Fertilizer, 23(5): 1370–1377.[in Chinese] | |
舒婉钦, 陈光才, 王树凤, 等. 杞柳4个品种Cd的亚细胞分布、化学形态及其对Cd转运的影响. 植物生理学报, 2022, 58 (9): 1766- 1778. | |
Shu W Q, Chen G C, Wang S F, et al. Subcellular distribution, chemical forms of cadmium and the effects on cadmium transportation in four cultivars of Salix integra . Plant Physiology Journal, 2022, 58 (9): 1766- 1778. | |
唐铎腾, 周 荣, 张 胜. 2017. 雌雄青杨幼苗对磷缺乏差异响应的离子组学研究. 山地学报, 35(5): 669–676. | |
Tang Y T, Zhou R, Zhang S, et al. 2017. Ionomic study on Populus Cathayana males and females responding to phosphorus deficiency. Mountain Reseaech, 35(5): 669–676.[in Chinese] | |
万雪琴, 张 帆, 夏新莉, 等. 镉胁迫对杨树矿质营养吸收和分配的影响. 林业科学, 2009, 45 (7): 45- 51.
doi: 10.3321/j.issn:1001-7488.2009.07.008 |
|
Wan X Q, Zhang F, Xia X L, et al. Effects of cadmium stress on absorption and distribution of mineral nutrients in poplar plants. Scientia Silvae Sinicaes, 2009, 45 (7): 45- 51.
doi: 10.3321/j.issn:1001-7488.2009.07.008 |
|
王雯雯, 叶如梦. 2020. 磷对旱柳生长特性及富集重金属Cd能力的影响. 环境科学与技术, 43(S2): 79-86. | |
Wang W W, Ye R M. 2020. The Effects of Phosphorus on the growth characteristics and Cd accumulation of Salix matsudana under Cd stress, Environmental Science & Technology, 43(S2): 79-86.[in Chinese] | |
杨卫东, 陈益泰, 王树凤. 2009. 镉胁迫对旱柳矿质营养吸收的影响. 林业科学研究, 22(4): 618–623. | |
Yang W D, Chen Y T, Wang S F. 2009. Effects of cadmium stree on mineral nutrient uptake of Salix matsudana. Forest Research, 22(4): 618–623.[in Chinese] | |
杨晓荣, 黄永春, 刘仲齐, 等. 2019. 叶面喷施二巯基丁二酸对晚稻籽粒镉及矿质元素含量的影响. 农业环境科学学报, 38(8): 1802–1808. | |
Yang X R, Huang Y C, Liu Z Q, et al. Foliar application of DMSA: Effects on Cd and other mineral elements in rice grains. Journal of Agro-Environment Science, 38(8): 1802-1808.[in Chinese] | |
张然然, 张 鹏, 都韶婷. 2016. 镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展. 应用生态学报, 27(3): 981–992. | |
Zhang R R, Zhang P, Du S T, et al. 2016. Oxidative stress-related signals and their regulation under Cd stress: a review. Chinese Journal of Applied Ecology, 27( 3) : 981-992.[in Chinese] | |
Baxter I. 2015. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? Journal of Experimental Botany 66(8): 2127–2131. | |
Baxter I, Dilkes B P. 2012a. Elemental profiles reflect plant adaptations to the environment. Science, 336: 1661–1663. | |
Baxter I, Hermans C, Lahner B, et al. 2012b. Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS ONE, 7(4): e35121. | |
Borišev M, Pajević S, Nikolić N, et al. 2016. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L. International Journal of Phytoremediation. 18(2): 164–170. | |
Brown S L, Chaney R L, Angle J S, et al. Phytoremediation potential of Thlaspi Caerulescens and Bladder Campion for Zinc- and Cadmium-contaminated soil. Journal of Environmental Quality, 1994, 23 (6): 1151- 1157. | |
Cao Y Q, Ye S C, Yao X H, et al. 2019. Leaf ionome to predict the physiological status of nitrogen, phosphorous, and potassium in Camellia oleifera. Pakistan Journal of Botany, 51(4): 1349-1355. | |
Chen Z, Watanabe T, Shinano T, et al. Element interconnections in Lotus japonicus: a systematic study of the effects of element additions on different natural variants . Soil Science and Plant Nutrition, 2009, 55 (1): 91- 101.
doi: 10.1111/j.1747-0765.2008.00311.x |
|
Chu Q N, Watanabe T, Sha Z, et al. 2015. Interactions between Cs, Sr and other nutrient and trace element accumulation in Amaranthus shoot in response to variety effect. Journal of Agricultural and Food Chemistry, 2355-2363. | |
De Maria S, Rivelli A R, Kuffner M, et al. Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms . Chemosphere, 2011, 84 (9): 1256- 1261.
doi: 10.1016/j.chemosphere.2011.05.002 |
|
Fan T T, Yang L B, Wu X, et al. 2016. The PSE1 gene modulates lead tolerance in Arabidopsis. Journal of Experimental Botany, 67(15): 4685–4695. | |
Feng X M, Han L, Chao D Y, et al. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. Journal of Hazardous Materials, 2017, 331, 246- 256.
doi: 10.1016/j.jhazmat.2017.02.041 |
|
Han X J, Zhang Y X, Yu M, et al. Transporters and ascorbate–glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes. Tree Physiology, 2020, 40 (8): 1126- 1142.
doi: 10.1093/treephys/tpaa029 |
|
Hoefer C, Santner J, Puschenreiter M, et al. Localized metal solubilization in the rhizosphere of Salix smithiana upon sulfur application . Environmental Science & Technology, 2015, 49 (7): 4522- 4529. | |
Kong X S, Zhao Y X, Tian K, et al. Insight into nitrogen and phosphorus enrichment on cadmium phytoextraction of hydroponically grown Salix matsudana Koidz cuttings . Environmental Science and Pollution Research, 2020, 27 (8): 8406- 8417.
doi: 10.1007/s11356-019-07499-4 |
|
Lahner B, Gong J, Mahmoudian M, et al. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana . Nat Biotechnol, 2003, 21 (10): 1215- 1221.
doi: 10.1038/nbt865 |
|
Leitenmaier B, Küpper H. 2013. Compartmentation and complexation of metals in hyperaccumulator plants. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2013.00374 | |
Li J J, Zhao X Q, Wang J L, et al. Strategies of cadmium and copper uptake and translocation in different plant species growing near an E-waste dismantling site at Wenling, China. Environmental Science and Pollution Research, 2021, 28 (44): 62562- 62571.
doi: 10.1007/s11356-021-15072-1 |
|
Liu J G, Liang J S, Li K Q, et al. 2003. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, Environmental and Public Health Management, 52(9): 1467–1473. | |
Lowry D B, Sheng C C, Zhu Z, et al. Mapping of ionomic traits in mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PLoS ONE, 2012, 7 (1): e30730.
doi: 10.1371/journal.pone.0030730 |
|
Maestri M, Pietrini F, Maestri E, et al. 2011. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology, 31(12): 1319-1934 | |
Mleczek M, Kozłowska M, Kaczmarek Z, et al. Cadmium and lead uptake by Salix viminalis under modified Ca/Mg ratio . Ecotoxicology, 2011, 20 (1): 158- 165.
doi: 10.1007/s10646-010-0567-z |
|
Niron H, Barlas N, Salih B, et al. 2020. Comparative transcriptome, metabolome, and ionome analysis of two contrasting common bean genotypes in saline conditions. Frontiers in Plant Science, 11: 599501. | |
Oropeza-Aburto A, Cruz-Ramírez A, Acevedo-Hernández G J, et al. 2012. Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element. Journal of Experimental Botany, 63(5): 2189–2202. | |
Przedpełska-Wąsowicz E, Polatajko A, Wierzbicka M. 2012. The influence of Cadmium stress on the content of mineral nutrients and metal-binding proteins in Arabidopsis halleri. Water Air Soil Pollut, 223(8): 5445–5458. | |
Qin S Y, Liu H G, Nie Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere, 2020, 30 (2): 168- 180.
doi: 10.1016/S1002-0160(20)60002-9 |
|
Qin X M, Xia Y T, Hu C X, et al. Ionomics analysis provides new insights into the co-enrichment of cadmium and zinc in wheat grains. Ecotoxicology and Environmental Safety, 2021, 223, 112623.
doi: 10.1016/j.ecoenv.2021.112623 |
|
Riaz M, Kamran M, Rizwan M, et al. Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere, 2021, 273, 129690.
doi: 10.1016/j.chemosphere.2021.129690 |
|
Salt D E, Baxter I, Lahner B. 2008. Ionomics and the study of the plantionome. Annual Review of Plant Biology, 59(1): 709–733. | |
Seshadri B, Bolan N S, Wijesekara H, et al. Phosphorus–cadmium interactions in paddy soils. Geoderma, 2016, 270, 43- 59.
doi: 10.1016/j.geoderma.2015.11.029 |
|
Singh U M, Sareen P, Sengar R S, et al. Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiologiae Plantarum, 2013, 35 (9): 2641- 2653.
doi: 10.1007/s11738-013-1316-8 |
|
Teles V L G, Sousa G V, Modolo L V, et al. 2022. Ionomic responses of hydroponic-grown basil ( Ocimum basilicum L. ) to cadmium long-time exposure. Metallomics, 14(5): 23. | |
Wang L, Ji B, Hu Y H, et al. 2017. A review on in situ phytoremediation of mine tailings. Chemosphere, 184: 594–600. | |
Wang S F, Shi X, Salam M M A, et al. Integrated study on subcellular localization and chemical speciation of Pb reveals root strategies for Pb sequestration and detoxification in Salix integra . Plant and Soil, 2021, 467 (1/2): 197- 211.
doi: 10.1007/s11104-021-05045-1 |
|
Wang S F, Shi X, Sun H J, et al. 2014. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with Lead. PLoS ONE, 9(9): e108568. | |
Xia Z H, Zhang S, Cao Y, et al. 2019. Remediation of cadmium, lead and zinc in contaminated soil with CETSA and MA/AA. Journal of Hazardous Materials, 366, 177–183. | |
Yamashita H, Fukuda Y, Yonezawa S, et al. 2020. Tissue ionome response to rhizosphere pH and aluminum in tea plants (Camellia sinensis L.), a species adapted to acidic soils. Plant-Environment Interactions, 1(2): 152–164. | |
Zhang Y F, Wang Y, Ding Z T, et al. 2017. Zinc stress affects ionome and metabolome in tea plants. Plant Physiology and Biochemistry, 111: 318–328. | |
Zeng P, Guo Z H, Xiao X Y, et al. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L . in cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 2020, 189, 109973.
doi: 10.1016/j.ecoenv.2019.109973 |
[1] | 尹伊君,毛云飞,杨露,张璐璐,胡艳丽,毛志泉,陈学森,沈向. 增氧灌溉对平邑甜茶生长及根区土壤的影响[J]. 林业科学, 2021, 57(10): 59-70. |
[2] | 刘秀梅, 张志浩, 王倩, 凌春辉, 韦业, 颜攀, 孟诗原, 朱红, 王华田. 磁化处理对镉胁迫下欧美杨I-107AsA-GSH循环和内源激素水平的影响[J]. 林业科学, 2019, 55(9): 81-91. |
[3] | 徐呈祥,马艳萍,旦书艳,邹燕,陈玉林. 硅对檀香紫檀苗木矿质元素吸收、微域分布及离子泵活性的影响[J]. 林业科学, 2019, 55(10): 1-9. |
[4] | 宋爱云,董林水,陈纪香,彭玲,刘京涛,夏江宝,陈印平. 绒毛白蜡雌雄株不同器官矿质元素季节动态的比较[J]. 林业科学, 2019, 55(10): 162-170. |
[5] | 刘辉, 吴小芹, 任嘉红, 陈丹. 荧光假单胞菌与红绒盖牛肝菌共接种对杨树氮代谢和矿质元素含量的影响[J]. 林业科学, 2018, 54(10): 56-63. |
[6] | 王树凤, 施翔, 田生科, 孙海菁, 杨肖娥, 陈益泰, 刘婷. 杞柳不同品种对铅的积累、耐性及叶片元素原位微区分布特征[J]. 林业科学, 2016, 52(5): 71-80. |
[7] | 杨盛, 郝国伟, 张晓伟, 白牡丹, 李凯, 石美娟, 程培红, 郭黄萍, 李六林. ‘玉露香梨’僵芽发生与矿质营养的关系[J]. 林业科学, 2016, 52(2): 127-133. |
[8] | 张敏, 黄利斌, 周鹏, 钱猛, 窦全琴. 榉树秋季转色期叶色变化的生理生化[J]. 林业科学, 2015, 51(8): 44-51. |
[9] | 浦俊, 徐福利, 王渭玲. 保墒措施对临猗梨枣叶片矿质元素含量和产量的影响[J]. 林业科学, 2014, 50(7): 8-16. |
[10] | 欧阳芳群, 王军辉, 贾子瑞, 李悦, 仲永芳, 祁生秀. 补光对青海云杉家系幼苗生物量和矿质元素的影响[J]. 林业科学, 2014, 50(11): 188-196. |
[11] | 任艳军;马建军;张立彬;杜彬;于凤鸣. 欧李叶表皮形态气孔指标与叶果矿质元素含量变化的关系[J]. 林业科学, 2012, 48(4): 133-137. |
[12] | 胡志伟;李保国;齐国辉;郭素萍;张雪梅;董丽欣;李杰. "绿岭"核桃种仁充实期叶片与果实矿质元素含量变化规律[J]. 林业科学, 2011, 47(8): 82-87. |
[13] | 胡静静 沈向 李雪飞 赵静 李欣 张鲜鲜. 黄连木秋季叶色变化与可溶性糖和矿质元素的关系[J]. 林业科学, 2010, 46(2): 80-86. |
[14] | 万雪琴;张帆 夏新莉 尹伟伦. 镉胁迫对杨树矿质营养吸收和分配的影响*[J]. 林业科学, 2009, 12(7): 45-51. |
[15] | 万雪琴; 张 帆 夏新莉 尹伟伦. 镉处理对杨树光合作用及叶绿素荧光参数的影响*[J]. 林业科学, 2008, 44(6): 79-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||