|  | 刘怡君, 庞 勇, 廖声熙, 等. 2016. 机载LiDAR和高光谱融合实现普洱山区树种分类. 林业科学研究, 29(3): 407-412. | 
																													
																						|  | Liu Y J, Pang Y, Liao S X, et al. 2016. Merged airborne LiDAR and hyperspectral data for tree species classification in Pu'er mountain area. Forest Research, 29 (3): 407-412. [in Chinese] | 
																													
																						|  | 卢元兵, 李华朋, 张树清. 2021. 基于混合3D-2D CNN的多时相遥感农作物分类. 农业工程学报, 37(13): 142-151. | 
																													
																						|  | Lu Y B, Li H P, Zhang S Q. 2021. Multi-temporal remote sensing based crop classification using a hybrid 3D-2D CNN model. Transactions of the Chinese Society of Agricultural Engineering, 37(13): 142-151. [in Chinese] | 
																													
																						|  | 王 彬. 2018. 基于机载LiDAR和高光谱数据的单木提取和树种识别. 南京: 南京信息工程大学. | 
																													
																						|  | Wang B. 2018. Individual tree extraction and species identification based on airborne LiDAR and hyperspectral data. Nanjing: Nanjing University of Information Engineering. [in Chinese] | 
																													
																						|  | 赵 霖. 2019. 基于机载高光谱数据空谱联合特征的3D-CNN树种分类算法. 北京: 北京林业大学, 79. | 
																													
																						|  | Zhao L 2019. Three-dimensional convolutional neuarl network algorithm for forest tree species classification using airborne hyperspectral spatial-spectral joint features. Beijing: Beijing Forestry University, 79. [in Chinese] | 
																													
																						|  | 赵 霖, 张晓丽, 吴艳双, 等. 2020. 面向机载高光谱数据的3D-CNN亚热带森林树种分类. 林业科学, 56(11): 97−107. | 
																													
																						|  | Zhao L, Zhang X L, Wu Y S, et al 2020. Subtropical forest tree species classification based on 3D-CNN for airborne hyperspectral data. Scientia Silvae Sinicae, 56 (11): 97-107. [in Chinese] | 
																													
																						|  | Laurel B, Leonhard B, Ellen H, et al Tree species classification using hyperspectral imagery: a comparison of two classifiers. Remote Sensing, 2016, 8 (6): 445. | 
																													
																						|  | Dalponte M, Frizzera L, Gianelle D Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data. PeerJ, 2019, 6, e6227. doi: 10.7717/peerj.6227
 | 
																													
																						|  | Fassnacht F E, Latifi H, Stereńczak K, et al Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 2016, 186, 64- 87. doi: 10.1016/j.rse.2016.08.013
 | 
																													
																						|  | Fricker G A, Ventura J D, Wolf J A, et al A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery. Remote Sensing, 2019, 11 (19): 2326. doi: 10.3390/rs11192326
 | 
																													
																						|  | Hinton G E, Srivastava N, Krizhevsky A, et al. 2013. Improving neural networks by preventing co-adaptation of feature detectors. Neural and Evolutionary Computing, arXiv:1207.0580. | 
																													
																						|  | Hinton G, Osindero S, Welling M, et al Unsupervised discovery of non-linear structure using contrastive backpropagation. Cognitive Science, 2008, 30 (4): 725- 731. | 
																													
																						|  | Kingma D, Ba J. 2014. Adam: a method for stochastic optimization. Computer Science, arXiv:1412.6980. | 
																													
																						|  | Krizhevsky A, Sutskever I, Hinton G ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 25 (2): 1097- 1105. | 
																													
																						|  | Li Y, Zhang H, Shen Q Spectral–Spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sensing, 2017, 9 (1): 67. | 
																													
																						|  | Marrs J, Ni-meister W Machine learning techniques for tree species classification using co-registered LiDAR and hyperspectral data. Remote Sensing, 2019, 11 (7): 819. doi: 10.3390/rs11070819
 | 
																													
																						|  | Maschler J, Atzberger C, Immitzer M Individual tree crown segmentation and classification of 13 tree species using airborne hyperspectral data. Remote Sensing, 2018, 10 (8): 1218. doi: 10.3390/rs10081218
 | 
																													
																						|  | Mäyrä J, Keski-saari S, Kivinen S, et al Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sensing of Environment, 2021, 256, 112322. doi: 10.1016/j.rse.2021.112322
 | 
																													
																						|  | Meyer M D, North M P, Gray A N, et al Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest. Plant & Soil, 2007, 294 (1/2): 113- 123. | 
																													
																						|  | Modzelewska A, Fassnacht F E, Stereńczak K Tree species identification within an extensive forest area with diverse management regimes using airborne hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101960. doi: 10.1016/j.jag.2019.101960
 | 
																													
																						|  | North M, Oakley B, Chen J, et al. 2002. Vegetation and ecological characteristics of mixed-conifer and red fir forests at the teakettle experimental forest. General Technical Report PSW-GTR-186. | 
																													
																						|  | Sankey T, Donager J, Mcvay J, et al UAV LiDAR and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sensing of Environment, 2017, 195, 30- 43. doi: 10.1016/j.rse.2017.04.007
 | 
																													
																						|  | Tran D, Bourdev L, Fergus R, et al. 2015. Learning spatiotemporal features with 3D convolutional networks. IEEE, arXiv:1412.0767. | 
																													
																						|  | Xu H, Yao W, Cheng L, et al Multiple spectral resolution 3D convolutional neural network for hyperspectral image classification. Remote Sensing, 2021, 13 (7): 1248. doi: 10.3390/rs13071248
 | 
																													
																						|  | Zhang B, Zhao L, Zhang X Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images. Remote Sensing of Environment, 2020, 247, 111938. doi: 10.1016/j.rse.2020.111938
 |