|
崔 蓓. 2023. 侧柏古树资源遗传多样性与遗传关系研究. 杨凌: 西北农林科技大学.
|
|
Cui B. 2023. Genetic diversity and relationship of old tree resources of Platycladus orientalis. Yangling: Northwest A&F University. [in Chinese]
|
|
王玉山. 2011. 侧柏种源遗传多样性与地理变异规律研究. 泰安: 山东农业大学.
|
|
Wang Y S. 2011. Genetic diversity and geographic variation of Platycladus orientalis (L. ) Franco provenances. Tai’an: Shandong Agriculture University. [in Chinese]
|
|
张 胜. 2017. 侧柏对干旱与自然低温胁迫响应的分子机制研究. 杨凌: 西北农林科技大学.
|
|
Zhang S. 2017. Studies on mechanisms of molecular response to drought and natural low temperature stress in Platycladus orientalis (L. ). Yangling: Northwest A&F University. [in Chinese]
|
|
赵 忠. 2022. 古树保护理论与技术. 北京: 科学出版社.
|
|
Zhao Z. 2022. Theory and technology of old tree protection. Beijing: Science Press. [in Chinese]
|
|
周倩怡. 2020. 黄帝陵侧柏古树衰老的叶细胞生物学机制研究. 杨凌: 西北农林科技大学.
|
|
Zhou Q Y. 2020. Leaf cytobiological mechanism of ancient tree ageing in Platycladus orientalis at the Huangdi Mausoleum. Yangling: Northwest A&F University. [in Chinese]
|
|
Armada E, Roldán A, Azcon R. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microbial Ecology, 2014, 67 (2): 410- 420.
doi: 10.1007/s00248-013-0326-9
|
|
Bernal-Escobar M, Zuleta D, Feeley K J. Changes in the climate suitability and growth rates of trees in eastern North America. Ecography, 2022, (9): e06298.
doi: 10.1111/ecog.06298
|
|
Bosabalidis A M, Kofidis G. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science, 2002, 163 (2): 375- 379.
doi: 10.1016/S0168-9452(02)00135-8
|
|
Flanary B E, Kletetschka G. Analysis of telomere length and telomerase activity in tree species of various lifespans, and with age in the bristlecone pine Pinus longaeva. Rejuvenation Research, 2006, 9 (1): 61- 63.
doi: 10.1089/rej.2006.9.61
|
|
Franklin J F, Shugart H H, Harmoon M E. Tree death as an ecological process. Bioscience, 1987, 37 (8): 550- 556.
doi: 10.2307/1310665
|
|
Gauli A, Neupane P R, Mundhenk P, et al. Effect of climate change on the growth of tree species: dendroclimatological analysis. Forests, 2022, 13 (4): 496.
doi: 10.3390/f13040496
|
|
Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation. Biochemical Journal, 2012, 444 (1): 11- 25.
doi: 10.1042/BJ20120245
|
|
Hernández-Carrasco D, Tylianakis J M, Lytle D A, et al. Ecological and evolutionary consequences of changing seasonality. Science, 2025, 388 (6750): 928- 939.
|
|
Hu Y, Chen M, Yang Z L, et al. Soil microbial community response to nitrogen application on a swamp meadow in the arid region of Central Asia. Frontiers in Microbiology, 2022, 12 (1): 797306.
|
|
Huang L, Jin C, Pan Y J, et al. Human activities and species biological traits drive the long-term persistence of old trees in human-dominated landscapes. Nature Plants, 2023, 9, 898- 907.
doi: 10.1038/s41477-023-01412-1
|
|
IPPC. 2021. Climate change 2021: The physical science basis. Cambridge: Cambridge University Press.
|
|
Jones O R, Scheuerlein A, Salguero Gómez R, et al. Diversity of ageing across the tree of life. Nature, 2014, 505, 169- 173.
doi: 10.1038/nature12789
|
|
Lindenmayer D B. Conserving large old trees as small natural features. Biological Conservation, 2017, 211, 51- 59.
doi: 10.1016/j.biocon.2016.11.012
|
|
Liu J J, Xia S W, Zeng D, et al. Age and spatial distribution of the world’s oldest trees. Conservation Biology, 2022, 36 (4): e13907.
doi: 10.1111/cobi.13907
|
|
Lu M, Chen M M, Song J Y, et al. Anatomy and transcriptome analysis in leaves revealed how nitrogen (N) availability influence drought acclimation of Populus. Trees Structure and Function, 2019, 33, 1003- 1014.
doi: 10.1007/s00468-019-01834-5
|
|
Mérian P, Lebourgeois F. Size-mediated climate–growth relationships in temperate forests: a multi-species analysis. Forest Ecology and Management, 2011, 261 (8): 1382- 1391.
doi: 10.1016/j.foreco.2011.01.019
|
|
Nepstad D C, Tohver I M, Ray D, et al. Mortality of large trees and lianas following experimental drought in an Amazon Forest. Ecology, 2007, 88 (9): 2259- 2269.
doi: 10.1890/06-1046.1
|
|
Oberle B, Ogle K, Zanne A E, et al. When a tree falls: controls on wood decay predict standing dead tree fall and new risks in changing forests. PLoS ONE, 2018, 13 (5): e0196712.
doi: 10.1371/journal.pone.0196712
|
|
Piovesan G, Biondi F. On tree longevity. New Phytologist, 2021, 231 (4): 1318- 1337.
doi: 10.1111/nph.17148
|
|
Popkin G. 2022. Is the world’s oldest tree growing in a ravine in Chile? Science. doi: 10.1126/ science.add1051.
|
|
Qin S W, Jiang R J, Zhang N, et al. Genome-wide analysis of RNAs associated with Populus euphratica Oliv. heterophyll morphogenesis. Scientific Reports, 2018, 8, 17248.
doi: 10.1038/s41598-018-35371-x
|
|
Shigo A L. Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annual Review of Phytopathology, 1984, 22, 183- 214.
|
|
WMO. 2025. State of the global climate 2024. Geneva, Switzerland: WMO.
|
|
Zhang R F, Vivanco J M, Shen Q R. The unseen rhizosphere root–soil–microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37, 8- 14.
doi: 10.1016/j.mib.2017.03.008
|
|
Zhang X, Chen M, Shao T Y, et al. Adaptation of plantations to drought events in arid and semi-arid regions: evidence from tree resilience. Forest Ecology and Management, 2025, 578 (15): 122437.
|
|
Zhang Z Y, Li X Y. The resilience of ecosystems to drought. Global Change Biology, 2023, 29 (13): 3517- 3518.
doi: 10.1111/gcb.16724
|