欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (7): 83-93.doi: 10.11707/j.1001-7488.LYKX20250196

• 综合评述 • 上一篇    

纳米材料提升植物抗逆性的研究进展与林业应用展望

陈菲然1,2,3,张子洁2,方升佐1,2,3,*()   

  1. 1. 森林食物资源挖掘与利用全国重点实验室 南京 210037
    2. 南京林业大学林草学院 南京 210037
    3. 南方现代林业协同创新中心 南京 210037
  • 收稿日期:2025-04-03 接受日期:2025-06-20 出版日期:2025-07-20 发布日期:2025-07-25
  • 通讯作者: 方升佐 E-mail:fangsz@njfu.edu.cn
  • 基金资助:
    国家自然科学基金项目(32071750,42377252);江苏省基础研究计划资助(BK20230107);江苏省重点研发计划(现代农业)重点项目(BE2019388)。

Recent Advances in Nanomaterials Enhancing Plant Stress Resistance and Their Application Prospects in Forestry

Feiran Chen1,2,3,Zijie Zhang2,Shengzuo Fang1,2,3,*()   

  1. 1. National Key Laboratory for the Development and Utilization of Forest Food Resources Nanjing 210037
    2. College of Forestry and Grassland, Nanjing Forestry University Nanjing 210037
    3. Co-Innovation Center for the Sustainable Forestry in Southern China Nanjing 210037
  • Received:2025-04-03 Accepted:2025-06-20 Online:2025-07-20 Published:2025-07-25
  • Contact: Shengzuo Fang E-mail:fangsz@njfu.edu.cn

摘要:

植物抗逆性对农林业生产具有重要意义。传统抗逆性改良方法存在育种周期长、效率低等局限性,亟需开发更高效精准的新技术和新方法以增强植物抗逆性,推动农林业可持续发展。近年来,随着纳米技术在农林生态领域的集成创新与应用,纳米材料(NMs)在提升植物抗逆性方面的作用逐渐凸显,为应对气候变化提供了新的机遇。本研究基于NMs与植物抗逆性研究现状,重点从以下3方面系统论述NMs提升植物抗逆性的研究进展及其在林业中的应用潜力和挑战:1) NMs增强植物对非生物胁迫(盐、干旱、重金属胁迫等)和生物胁迫(病虫害)的抵御能力;2) NMs提升植物抗逆性的作用机制;3) NMs在提高林木抗逆性中的探索与实践。总体而言,NMs因其独特的形态结构和高反应活性,在促进植物生长及缓解生物和非生物胁迫方面展现出巨大应用潜力,且纳米技术已在农作物品种改良和栽培实践中取得初步成效,特别是在非生物胁迫下提高作物产量方面具有广阔应用前景。然而,由于林业经营周期较长,NMs在提高林木抗逆性、促进产量增长以及助力森林生态系统修复方面的潜力有待进一步挖掘,当前研究仍面临NMs剂量依赖性效应、潜在生态风险及其田间应用效率等关键挑战。未来,需重点聚焦绿色合成技术开发、多组学机制解析、智能响应材料设计及多学科协同创新,同时构建标准化风险评估体系,推动纳米技术从实验室研究向规模化应用迈进,为林业可持续发展提供强有力的科技支撑。

关键词: 纳米材料, 植物抗逆性, 调控机制, 林木生长, 剂量依赖性

Abstract:

Plant stress resistance is crucial for ensuring agricultural and forestry production. However, conventional approaches for enhancing stress resistance have limitations such as long breeding cycles and low efficiency. The development of novel technologies is imperative to achieve more efficient and precise improvements in plant stress resistance, thereby advancing sustainable agriculture and forestry. Recent integration of nanotechnology into agricultural and forestry practices has revealed increasingly evident stress-alleviating and growth-promoting effects of nanomaterials (NMs) on plants, providing new strategies to combat climate change challenges. Based on current research regarding NMs and plant stress resistance, this review systematically summarizes the progress in NM-mediated stress resistance enhancement, application potential, and associated challenges in forestry through three key dimensions: 1) NM-driven augmentation of plant resistance to abiotic stresses (salinity, drought, and heavy metal toxicity) and biotic stresses (pests and diseases); 2) underlying mechanisms of NM-mediated stress resistance; 3) exploration and practical implementation of NMs in enhancing forest resistance. Collectively, NMs demonstrate substantial potential in promoting plant growth and alleviating both biotic and abiotic stresses due to their unique morphological structures and high reactivity. Nanotechnology has achieved preliminary success in the improvement of crop varieties and cultivation practices, particularly in increasing crop yields under abiotic stress conditions. However, given the long management cycle of forestry, the potential of NMs in improving forest stress resistance, promoting productivity, and facilitating ecosystem restoration warrants further exploration. Current research still confronts significant challenges such as the dose-dependent effects of NMs, potential ecological risks, and low field application efficiency. Future investigations should prioritize: green synthesis technology development, multi-omics mechanism elucidation, smart responsive material design, and interdisciplinary collaboration. Concurrently, standardized risk assessment systems should be established to facilitate the transition of nanotechnology from laboratory research to scalable applications, providing strong scientific and technological support for the sustainable development of forestry.

Key words: nanomaterials, plant stress resistance, regulatory mechanisms, tree growth, dose-dependent effects

中图分类号: