|
何 拓. 2019. 基于机器学习的黄檀属与紫檀属木材识别方法研究. 北京: 中国林业科学研究院.
|
|
He T. 2019. Study on wood identification methods for Dalbergia and Pterocarpus species in combination with machine learning. Beijing: Chinese Academy of Forestry. [in Chinese]
|
|
何 拓, 刘守佳, 陆 杨, 等. iWood: 基于卷积神经网络的濒危珍贵树种木材自动识别系统. 林业科学, 2021a, 57 (9): 152- 159.
|
|
He T, Liu S J, Lu Y, et al. iWood: an automated wood identification system for endangered and precious tree species using convolutional neural networks. Scientia Silvae Sinicae, 2021a, 57 (9): 152- 159.
|
|
何 拓, 焦立超, 郭 娟, 等. 木材信息学: 发展、应用与展望. 木材科学与技术, 2021b, 35 (4): 15- 24.
|
|
He T, Jiao L C, Guo J, et al. Wood informatics: history of development, application, and prospective trend. Chinese Journal of Wood Science and Technology, 2021b, 35 (4): 15- 24.
|
|
姜笑梅, 殷亚方, 刘 波. 木材树种识别技术现状、发展与展望. 木材工业, 2010, 24 (4): 36- 39.
|
|
Jiang X M, Yin Y F, Liu B. Current status, development and prospect of wood identification technology. China Wood Industry, 2010, 24 (4): 36- 39.
|
|
吕红燕, 冯 倩. 随机森林算法研究综述. 河北省科学院学报, 2019, 36 (3): 37- 41.
|
|
Lü H Y, Feng Q. A review of random forests algorithm. Journal of the Hebei Academy of Sciences, 2019, 36 (3): 37- 41.
|
|
刘晓丽, 王喜明, 姜笑梅, 等. 沙棘材解剖及物理力学性质的研究. 北京林业大学学报, 2004, 26 (2): 84- 89,117.
|
|
Liu X L, Wang X M, Jiang X M, et al. Anatomical and physico-mechanical properties of Hippophae rhamnoides L. Journal of Beijing Forestry University, 2004, 26 (2): 84- 89,117.
|
|
任 宁, 刘一星, 巩翠芝. 木材微观构造与拉伸断裂的关系. 东北林业大学学报, 2008, 36 (2): 33- 35.
doi: 10.3969/j.issn.1000-5382.2008.02.012
|
|
Ren N, Liu Y X, Gong C Z. Relationship between wood microstructure and tensile fracture. Journal of Northeast Forestry University, 2008, 36 (2): 33- 35.
doi: 10.3969/j.issn.1000-5382.2008.02.012
|
|
汪师孟, 夏美君. 十二种落叶栎木的木材分类. 北京林业大学学报, 1986, 8 (3): 17- 23.
|
|
Wang S M, Xia M J. Classification of twelve oak species by means of wood structure. Journal of Beijing Forestry University, 1986, 8 (3): 17- 23.
|
|
王善武, 沈熙环, 汪师孟. 油松种内材质变异的研究. 北京林业大学学报, 1992, 14 (1): 87- 92.
|
|
Wang S W, Shen X H, Wang S M. Study on variation of wood propertiesin Pinus tabulaeformis. Journal of Beijing Forestry University, 1992, 14 (1): 87- 92.
|
|
卫广扬. 东南亚热带木材识别的若干解剖特征研究. 安徽农学院学报, 1990, 17 (1): 19- 25.
|
|
Wei G Y. Observation on some anatomical features used in identification of tropical wood. Journal of Anhui Agricultural University, 1990, 17 (1): 19- 25.
|
|
Beeckman H. Wood anatomy and trait-based ecology. IAWA Journal, 2016, 37 (2): 127- 151.
doi: 10.1163/22941932-20160127
|
|
Beery W H, Ifju G, McLain T E. Quantitative wood anatomy-relating anatomy to transverse tensile strength. Wood and Fiber Science, 1983, 15 (4): 395- 407.
|
|
Bik H M. Let’s rise up to unite taxonomy and technology. PLoS Biology, 2017, 15 (8): e2002231.
doi: 10.1371/journal.pbio.2002231
|
|
Cornelius J P, Wightman K E, Grogan J E, et al. 2004. Tropical ecosystems. Swietenia (American Mahogany). Encyclopedia of Forest Sciences, Amsterdam: Elsevier, 1720-1726.
|
|
Hellberg E, Carcaillet C. Wood anatomy of west European Betula: quantitative descriptions and applications for routine identification in paleoecological studies. É coscience, 2003, 10 (3): 370- 379.
|
|
Gasson P, Miller R, Stekel D J, et al. Wood identification of Dalbergia nigra (CITES Appendix I) using quantitative wood anatomy, principal components analysis and naive Bayes classification. Annals of Botany, 2010, 105 (1): 45- 56.
doi: 10.1093/aob/mcp270
|
|
Gasson P E, Lancaster C A, Young R, et al. 2021. WorldForestID: addressing the need for standardized wood reference collections to support authentication analysis technologies; a way forward for checking the origin and identity of traded timber. Plants, People, Planet, 3(2): 130−141.
|
|
Godfray H C J. Challenges for taxonomy. Nature, 2002, 417, 17- 19.
doi: 10.1038/417017a
|
|
Han H, Guo X L, Yu H. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), 2016, Beijing, China, 219- 224.
|
|
He T, Marco J, Soares R, et al. Machine learning models with quantitative wood anatomy data can discriminate between Swietenia macrophylla and Swietenia mahagoni. Forests, 2019, 11 (1): 36- 49.
doi: 10.3390/f11010036
|
|
Ifju G. Quantitative wood anatomy certain geometrical-statistical relationships. Wood and Fiber Science, 1983, 15 (4): 326- 337.
|
|
Li S, Li X, Link R, et al. Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China. Forests, 2019, 10 (8): 662.
doi: 10.3390/f10080662
|
|
Liu S J, He T, Wang J J, et al. 2022. Can quantitative wood anatomy data coupled with machine learning analysis discriminate CITES species from their look-alikes? Wood Science and Technology, 56(5): 1567−1583.
|
|
Ovalle-Magallanes B, Madariaga-Mazón A, Navarrete A, et al. Mechanisms of action of antihyperglycemic mexicanolides isolated from Swietenia humillis: in vivo and in silico approaches. Planta Medica, 2016, 81 (S01): S1- S381.
|
|
Panshin A J. Comparative anatomy of the woods of the Meliaceae, sub-family swietenioideae. American Journal of Botany, 1933, 20 (10): 638- 668.
|
|
Ravindran P, Costa A, Soares R, et al. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant Methods, 2018, 14 (1): 1- 10.
doi: 10.1186/s13007-017-0271-6
|
|
von Arx G, Crivellaro A, Prendin A L, et al. Quantitative wood anatomy-practical guidelines. Frontiers in Plant Science, 2016, 7, 781.
|
|
von Arx G, Carrer M, Crivellaro A, et al. Q-NET–a new scholarly network on quantitative wood anatomy. Dendrochronologia, 2021, 70, 125890.
doi: 10.1016/j.dendro.2021.125890
|
|
Wiedenhoeft A C, Simeone J, Smith A, et al. Fraud and misrepresentation in retail forest products exceeds U. S. forensic wood science capacity. PLoS One, 2019, 14 (7): e0219917.
doi: 10.1371/journal.pone.0219917
|
|
Yin Y, Jiang X, Yuan L. 2016. Identification manual of endangered and precious timber species common in trades. Beijing: Science Press.
|