林业科学 ›› 2026, Vol. 62 ›› Issue (1): 164-176.doi: 10.11707/j.1001-7488.LYKX20240786
收稿日期:2024-12-23
修回日期:2025-02-24
出版日期:2026-01-25
发布日期:2026-01-14
通讯作者:
周海宾
E-mail:zhouhb@caf.ac.cn
基金资助:
Chunmeng Hui1,Pinbo Wang2,Haibin Zhou2,*(
),Zefang Xiao1,Yanjun Xie1
Received:2024-12-23
Revised:2025-02-24
Online:2026-01-25
Published:2026-01-14
Contact:
Haibin Zhou
E-mail:zhouhb@caf.ac.cn
摘要:
目的: 解析华北落叶松边缘木南北朝向木材物理力学性质的差异,探究原木立柱室外暴露过程中南北朝向木柱裂缝的发生发展机制,为华北落叶松原木和实木的合理利用提供科学理论指导。方法: 依据树木生长特征,在阴坡选择华北落叶松南边缘木和北边缘木为研究对象,分析南北朝向对木材生长轮宽度、微观构造和物理力学性质的影响规律。设计顶棚遮盖下的原木立柱室外暴露试验,探究室外环境下南北朝向对木柱开裂的影响。结果: 在综合环境因素影响下,华北落叶松南边缘木和北边缘木均表现出北向生长轮宽度较宽;在相同树高下,同株华北落叶松边缘木南北朝向在微观形貌上无明显差异,北向试件的气干含水率较南向试件高,但南向试件的密度和各向干缩率高于北向;力学强度在南北向的变异规律与密度变化呈高度正相关,北边缘木力学强度的南北向差异最大,南向边材抗弯强度、抗弯弹性模量、顺纹抗压强度相较于北向分别高53.7%、76.9%、21.4%。华北落叶松原木立柱为期10个月的室外暴露试验过程中,木柱在去除树皮后因水分蒸发导致的内外含水率梯度而迅速出现开裂现象;边材含水率迅速下降,由110%~130%降至54%~70%,心材含水率基本稳定在30%~38%,此时裂缝主要表现为长度增长、宽度基本保持不变;当边材含水率降至纤维饱和点后(15%~21%),裂缝长度基本保持不变,但部分裂缝宽度继续增加;当原木立柱含水率整体降至13%~15%时,裂缝形态趋于稳定。华北落叶松南边缘木相较于北边缘木更容易出现大裂缝,阳光照射是影响木柱裂缝分布的关键因素。结论: 在本试验范围内,华北落叶松南边缘木和北边缘木生长轮总宽度窄侧和宽侧物理力学性质存在差异,通过对同株华北落叶松生长轮宽窄的测定可以预测不同位置处的木材性质差异。原木立柱室外暴露过程中木柱裂缝更容易在生长轮总宽度较窄柱面形成,实际使用过程中以木柱生长轮总宽度较宽侧作为阳面可有效减少木柱开裂现象。
中图分类号:
惠春萌,王品博,周海宾,肖泽芳,谢延军. 华北落叶松边缘木南北朝向对其木材物理力学性质的影响[J]. 林业科学, 2026, 62(1): 164-176.
Chunmeng Hui,Pinbo Wang,Haibin Zhou,Zefang Xiao,Yanjun Xie. Effect of the North-South Orientation of Larix gmelinii var. principis-rupprechtii Border Trees on Its Physical and Mechanical Properties[J]. Scientia Silvae Sinicae, 2026, 62(1): 164-176.
图4
横切面显微构造 a、b:PB1边材处早材和晚材Earlywood and latewood at PB1 sapwood;c、d:PB1心材处早材和晚材显微构造Earlywood and latewood microstructure at PB1 heartwood;e、f:PT1边材处早材和晚材Earlywood and latewood at PT1 sapwood;g、h:PT1心材处早材和晚材Earlywood and latewood at PT1 heartwood. PB:北边缘木Northern edge tree; PT:南边缘木Southern edge tree."
表3
南北朝向心、边材细胞直径和细胞壁厚度①"
| 组别Groups | 弦向细胞直径Tangential cell diameter/μm | 细胞壁厚度Cell wall thickness/μm | |||||||||
| 心材Heartwood | 边材Sapwood | 心材Heartwood | 边材Sapwood | ||||||||
| 早材 Earlywood | 晚材 Latewood | 早材 Earlywood | 晚材 Latewood | 早材 Earlywood | 晚材 Latewood | 早材 Earlywood | 晚材 Latewood | ||||
| PB1北向North | 33.5±2.2 | 18.9±3.5 | 44.2±1.2 | 14.8±2.2 | 2.1±0.5 | 5.3±0.5 | 3.2±0.3 | 9.4±0.2 | |||
| PB1南向South | 33.8±1.9 | 19.2±3.1 | 45.8±1.8 | 16.1±1.8 | 2.2±0.8 | 5.3±0.8 | 3.1±0.5 | 9.6±0.3 | |||
| PT1北向North | 31.2±2.4 | 19.5±4.1 | 40.2±1.9 | 13.5±2.3 | 2.0±0.7 | 5.2±0.5 | 2.8±0.2 | 8.5±0.2 | |||
| PT1南向South | 30.8±1.7 | 19.1±3.8 | 40.9±2.2 | 12.8±2.5 | 1.8±0.6 | 5.5±0.2 | 2.6±0.3 | 8.2±0.4 | |||
| 白晓彬, 吴婧姝, 杨 娜, 等. 山西落叶松古旧木材材料性能无损检测技术研究. 太原理工大学学报, 2023, 54 (6): 1101- 1108. | |
| Bai X B, Wu J S, Yang N, et al. Study on nondestructive testing technology of material properties for ancient larch wood in Shanxi. Journal of Taiyuan University of Technology, 2023, 54 (6): 1101- 1108. | |
| 陈 奎, 刘 衡, 王 钟, 等. 杉木无性系与实生苗木材物理力学性能差异研究. 西南林业大学学报(自然科学), 2024, 44 (2): 209- 215. | |
| Chen K, Liu H, Wang Z, et al. Comparison on the physical and mechanical properties between clone and seedling from Cunninghamia lanceolata. Journal of Southwest Forestry University (Natural Sciences), 2024, 44 (2): 209- 215. | |
|
方文静, 蔡 琼, 朱江玲, 等. 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 2019, 43 (9): 742- 752.
doi: 10.17521/cjpe.2018.0244 |
|
|
Fang W J, Cai Q, Zhu J L, et al. Distribution, community structures and species diversity of larch forests in north China. Chinese Journal of Plant Ecology, 2019, 43 (9): 742- 752.
doi: 10.17521/cjpe.2018.0244 |
|
| 郭伊利, 李书恒, 王嘉川, 等. 芦芽山华北落叶松早晚材径向生长对气候变化响应的分离效应. 干旱区研究, 2022, 39 (5): 1449- 1463. | |
| Guo Y L, Li S H, Wang J C, et al. Response divergence of radial growth to climate change in earlywood and latewood of Larix principis-rupprechtii in Luya Mountain. Arid Zone Research, 2022, 39 (5): 1449- 1463. | |
| 郭宇航, 周淑容, 崔 佳, 等. 2017. 木节对轴心受压胶合木柱稳定承载力的影响. 土木建筑与环境工程, 39(3): 44-49. | |
| Guo Y H, Zhou S R, Cui J, et al. 2017. Effect of knot on stability of glulam column under axial compressive loading. Journal of Civil, Architectural & Environmental Engineering, 39(3): 44-49. [in Chinese] | |
| 韩 铭, 李 华, 蔡体久. 黑龙江太平沟国家级自然保护区森林群落植物多样性特. 森林工程, 2023, 39 (5): 40- 47. | |
| Han M, Li H, Cai T J. Plant diversity of forest community in Taipinggou National Nature Reserve, Heilongjiang Province. Forest Engineering, 2023, 39 (5): 40- 47. | |
| 黄广华, 陈瑞英. 阔叶黄檀木材解剖构造及其表面接触角. 森林工程, 2023, 39 (5): 85- 91. | |
| Huang G H, Chen R Y. Anatomical structure and contact angle of Dalbergia latifolia wood. Forest Engineering, 2023, 39 (5): 85- 91. | |
| 李 坚, 甘文涛, 陈志俊, 等. 向新出发, 木材科学前沿发展. 森林工程, 2025, 41 (1): 1- 39. | |
| Li J, Gan W T, Chen Z J, et al. Frontier advances in wood science towards a new departure. Forest Engineering, 2025, 41 (1): 1- 39. | |
| 刘方炎, 李 昆, 廖声熙, 等. 濒危植物翠柏的个体生长动态及种群结构与种内竞争. 林业科学, 2010, 46 (10): 23- 28. | |
| Liu F Y, Li K, Liao S X, et al. Interspecific competition, population structure and growth dynamics of endangered Calocedrus macrolepis. Scientia Silvae Sinicae, 2010, 46 (10): 23- 28. | |
| 刘一星, 赵广杰. 2012. 木材学. 2版. 北京: 中国林业出版社, 226−228. | |
| Liu Y X, Zhao G J. 2012. Wood science. 2nd ed. Beijing: China Forestry Publishing House, 226−228. [in Chinese] | |
| 骆秀琴, 管 宁, 张寿槐, 等. 杉木材性株内变异的研究Ⅰ. 木材力学性质和木材密度. 林业科学, 1997, 33 (4): 349- 355. | |
| Luo X Q, Guan N, Zhang S H, et al. Variation of mechanical properties and wood density within trees of Chinese-fir I. wood mechanical properties and wood density. Scientia Silvae Sinicae, 1997, 33 (4): 349- 355. | |
| 吕建雄, 林志远, 赵有科, 等. 杉木和I-72杨人工林木材干缩性质的研究. 林业科学, 2005, 41 (5): 127- 131. | |
| Lü J X, Lin Z Y, Zhao Y K, et al. Studies on the shrinkage properties of Chinese fir and I-72 poplar plantation wood. Scientia Silvae Sinicae, 2005, 41 (5): 127- 131. | |
| 朱忠漫. 2015. 干缩裂缝对历史建筑木构件受力性能影响的试验研究. 南京: 东南大学. | |
| Zhu Z M. 2015. Experimental research on mechanical properties of timber structural members with shrinkage cracks in historic buildings. Nanjing: Southeast University. [in Chinese] | |
| 韦 一, 范艳如, 邱勇斌, 等. 毛红椿生长、心材和材性性状遗传分析及家系选择. 林业科学研究, 2024, 37 (4): 33- 40. | |
| Wei Y, Fan Y R, Qiu Y B, et al. Genetic analysis and family selection of growth, heartwood and wood traits for Toona ciliata var. pubescens. Forest Research, 2024, 37 (4): 33- 40. | |
| 吴巩胜, 王政权. 水曲柳落叶松人工混交林中树木个体生长的竞争效应模型. 应用生态学报, 2000, 11 (5): 646- 650. | |
| Wu G S, Wang Z Q. Individual tree growth-competition model in mixed plantation of manchurian ash and dahurian larch. Chinese Journal of Applied Ecology, 2000, 11 (5): 646- 650. | |
| 武秀娟, 奥小平, 赵育鹏, 等. 芦芽山阴坡华北落叶松-云杉天然次生林林分空间结构特征. 浙江农林大学学报, 2021, 38 (1): 58- 64. | |
| Wu X J, Ao X P, Zhao Y P, et al. Spatial structure of Larix principis-rupprechtii-Picea spp. secondary forests on shady slope of Luyashan National Nature Reserve. Journal of Zhejiang A & F University, 2021, 38 (1): 58- 64. | |
| 武秀娟. 芦芽山阴坡典型天然次生林群落的种间联结性. 西北林学院学报, 2020, 35 (1): 54- 61. | |
| Wu X J. Interspecific association of the plant communities in natural secondary forests on north slope of Luya Mountain. Journal of Northwest Forestry University, 2020, 35 (1): 54- 61. | |
| 吴义强. 木材科学与技术研究新进展. 中南林业科技大学学报, 2021, 41 (1): 1- 28. | |
| Wu Y Q. Newly advances in wood science and technology. Journal of Central South University of Forestry & Technology, 2021, 41 (1): 1- 28. | |
| 谢 飞. 2022. 杉科4种木材薄壁组织比较研究. 合肥: 安徽农业大学. | |
| Xie F. 2022. Comparative study on wood parenchyma of 4 Taxodiaceae species. Hefei: Anhui Agricultural University. [in Chinese] | |
| 薛 峰, 江 源, 王明昌, 等. 芦芽山针叶林分布上下限土壤温度及含水量的季节差异. 生态学报, 2020, 40 (1): 141- 150. | |
| Xue F, Jiang Y, Wang M C, et al. Seasonal changes in soil temperature and water content at the upper and lower limits of coniferous forest on Luya Mountain, China. Acta Ecologica Sinica, 2020, 40 (1): 141- 150. | |
| 于永柱, 管 成, 张厚江, 等. 古建筑墙体木柱缺陷对其安全性影响数值模拟研究. 北京林业大学学报, 2022, 44 (1): 132- 145. | |
| Yu Y Z, Guan C, Zhang H J, et al. Numerical simulation on the influence of wall wood column defects on the safety of ancient building. Journal of Beijing Forestry University, 2022, 44 (1): 132- 145. | |
| 张文涛, 江 源, 王明昌, 等. 芦芽山阳坡不同海拔华北落叶松径向生长对气候变化的响应. 生态学报, 2015, 35 (19): 6481- 6488. | |
| Zhang W T, Jiang Y, Wang M C, et al. Responses of radial growth in Larix principis-rupprechtii to climate change along an elevation gradient on the southern slope of Luya Mountain. Acta Ecologica Sinica, 2015, 35 (19): 6481- 6488. | |
|
Bouslimi B, Koubaa A, Bergeron Y. Intra-ring variations and interrelationships for selected wood anatomical and physical properties of Thuja occidentalis L. Forests, 2019, 10 (4): 339.
doi: 10.3390/f10040339 |
|
|
Chen C J, Kuang Y D, Zhu S Z, et al. Structure-property-function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5 (9): 642- 666.
doi: 10.1038/s41578-020-0195-z |
|
|
Dias A, Gaspar M J, Carvalho A, et al. Within- and between-tree variation of wood density components in Pinus nigra at six sites in Portugal. Annals of Forest Science, 2018, 75 (2): 58.
doi: 10.1007/s13595-018-0734-6 |
|
|
Fu W L, Guan H Y, Kei S. Effects of moisture content and grain direction on the elastic properties of beech wood based on experiment and finite element method. Forests, 2021, 12 (5): 610.
doi: 10.3390/f12050610 |
|
|
Fu Z Y, Chen J X, Zhang Y Y, et al. Review on wood deformation and cracking during moisture loss. Polymers, 2023, 15 (15): 3295.
doi: 10.3390/polym15153295 |
|
|
Missanjo E, Matsumura J. Wood density and mechanical properties of Pinus kesiya Royle ex Gordon in Malawi. Forests, 2016, 7 (7): 135.
doi: 10.3390/f7070135 |
|
|
Mvondo R R N, Meukam P, Jeong J, et al. Influence of water content on the mechanical and chemical properties of tropical wood species. Results in Physics, 2017, 7, 2096- 2103.
doi: 10.1016/j.rinp.2017.06.025 |
|
| Oliver C D, Larson B C. 1996. Forest stand dynamics. New York: Wiley, 73−74. | |
|
Pulgar Lorenzo J Á, Riesco Muñoz G. Inter-tree and intra-tree variation in the physical properties of wood of laurel (Laurus nobilis). European Journal of Forest Research, 2018, 137 (4): 507- 515.
doi: 10.1007/s10342-018-1119-y |
|
| Startsev O V, Makhonkov A, Erofeev V, et al. Impact of moisture content on dynamic mechanical properties and transition temperatures of wood. Wood Material Science & Engineering, 2017, 12 (1): 55- 62. | |
|
Yavari N, Tripathi R, Wu B S, et al. The effect of light quality on plant physiology, photosynthetic, and stress response in Arabidopsis thaliana leaves. PLoS One, 2021, 16 (3): e0247380.
doi: 10.1371/journal.pone.0247380 |
| [1] | 杨世纪,万艳芳,白雨诗,王冬梅,于澎涛,王彦辉,王巍樾,陈瑜佳. 六盘山不同坡向华北落叶松林分蒸腾对环境因子的响应[J]. 林业科学, 2025, 61(3): 108-120. |
| [2] | 王巍樾,万艳芳,王冬梅,于澎涛,王彦辉,白雨诗. 六盘山华北落叶松优势木径向生长及主要环境因子的坡向差异[J]. 林业科学, 2025, 61(1): 26-36. |
| [3] | 张孝琰,倪晓凤,蔡琼,吉成均. 塞罕坝不同林龄华北落叶松人工林林下植物叶解剖特征及其氮添加响应[J]. 林业科学, 2025, 61(1): 37-46. |
| [4] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
| [5] | 韩新生,王彦辉,于澎涛,李振华,于艺鹏,王晓. 宁夏六盘山北部华北落叶松林树高与胸径生长的多因子响应耦合模型构建[J]. 林业科学, 2024, 60(11): 13-24. |
| [6] | 张智伟,万艳芳,于澎涛,白雨诗,王彦辉,刘兵兵,王晓,胡振华. 六盘山华北落叶松和白桦林日蒸腾对环境因子的响应差异[J]. 林业科学, 2024, 60(10): 29-39. |
| [7] | 王彦辉,于澎涛,田奥,韩新生,郝佳,刘泽彬,王晓. 黄土高原和六盘山区的林水协调多功能管理[J]. 林业科学, 2023, 59(4): 1-17. |
| [8] | 张紫优,王彦辉,田奥,刘泽彬,郭建斌,于澎涛,王晓,于艺鹏. 宁夏六盘山华北落叶松人工林植被碳密度时空特征及其环境响应[J]. 林业科学, 2023, 59(4): 32-45. |
| [9] | 罗娜,曲睿婕,李国雷,孟路,韩冷,郭桂凤,马凤原,王佳茜. 短日照和灌溉处理对华北落叶松苗木质量和夏季造林效果的影响[J]. 林业科学, 2023, 59(1): 90-98. |
| [10] | 张树梓,尹建庭,任启文,张树彬,王鑫,李联地,毕君. 冀北山地针阔混交林优势种对邻体物种多样性格局的影响[J]. 林业科学, 2022, 58(4): 32-39. |
| [11] | 段光爽,郑亚丽,洪亮,宋新宇,符利勇. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价[J]. 林业科学, 2022, 58(10): 1-9. |
| [12] | 张晓红,周超凡,张状,冯林艳,王利华,符利勇,谭炳香. 崇礼冬奥核心区华北落叶松人工林结构特征与优化模拟[J]. 林业科学, 2022, 58(10): 79-88. |
| [13] | 张晓芳,郭旭展,洪亮,陈涛,符利勇,张会儒. 冬奥核心区华北落叶松和白桦单木冠幅预测模型——组级贝叶斯模型、加性模型和混合效应模型比较[J]. 林业科学, 2022, 58(10): 89-100. |
| [14] | 黄宏超,谢栋博,段光爽,张状,张海江,符利勇. 华北落叶松和白桦半参数树高曲线模型[J]. 林业科学, 2022, 58(10): 101-110. |
| [15] | 张晓文,于青军,罗桂生,贾茜,吴丹妮,贾忠奎. 平泉油松建筑材林立地类型划分及立地质量评价[J]. 林业科学, 2021, 57(9): 1-12. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||