林业科学 ›› 2024, Vol. 60 ›› Issue (4): 16-30.doi: 10.11707/j.1001-7488.LYKX20220860
张宇1,张怀清2,安锋3,蒋玲1,云挺1,4,*
收稿日期:
2022-12-05
出版日期:
2024-04-25
发布日期:
2024-05-23
通讯作者:
云挺
基金资助:
Yu Zhang1,Huaiqing Zhang2,Feng An3,Ling Jiang1,Ting Yun1,4,*
Received:
2022-12-05
Online:
2024-04-25
Published:
2024-05-23
Contact:
Ting Yun
摘要:
目的: 定量模拟和刻画林木冠层太阳短波辐射的分布和截获情况,于时空变换下反演太阳短波辐射在不同林木冠层内的辐射通量变化,为林木培育经营和提质增效提供理论依据。方法: 首先,以公共数据集和真实扫描的校园内林木激光点云数据为例,结合设计的机器视觉算法,对林木激光点云进行枝叶分离和单叶分割,并用合适大小的椭圆形和圆柱体几何单元分别拟合每片叶片和骨架,开展林木真实模型重建; 其次,运用计算机图形学方法,结合研究地点的经纬度和时刻,模拟太阳入射光线,并引入物理学的双向反射和透射分布函数及蒙特卡洛光线追踪算法,开展反射和透射光线与冠层内叶片的碰撞模拟;最后,根据仪器测量得到的不同树种叶片平均粗糙度和折射率,结合光线追踪算法,实现林木冠层内短波辐射分布计算和木林冠层光截获效率评估。结果: 利用本研究方法计算时空变换下不同树种(芒果、橡胶、紫薇、樱花)4株树冠及一片香樟树林的直射、反射和透射太阳辐射通量,其中直射辐射通量占比约86%、反射辐射通量占比约5%、透射辐射通量占比约9%。叶面积指数高的树冠会拦截更多直射和透射光线;在太阳高度角较小时刻(上午或下午),斜射的太阳光线反射后易与树冠中其他叶片发生二次求交,产生较多反射辐射通量。同时,由于林木的趋光性,中午树冠光线拦截率高于上午和下午10%左右。比对采用本研究方法计算的树冠辐射通量拦截比值和样地手持光电仪器实测结果,绝对误差小于6%。结论: 在测绘科学、计算机图形学及林学多学科视角融合下,本研究基于激光点云重建树木真实表观形态结构,并将蒙特卡洛光线追踪算法与物理学的双向反射和透射分布函数相融合,真实模拟光线在树冠中的传播过程,可准确获取林木冠层内太阳短波辐射分布与树冠辐射通量拦截值,对研究时空变换下林木太阳辐射吸收、光强与树冠形态结构的耦合关联及不同表型参数的林冠辐射传输模型均有重要启示意义。
中图分类号:
张宇,张怀清,安锋,蒋玲,云挺. 基于计算机模拟模型的林木冠层太阳短波辐射定量分析方法[J]. 林业科学, 2024, 60(4): 16-30.
Yu Zhang,Huaiqing Zhang,Feng An,Ling Jiang,Ting Yun. A Quantitative Analysis Method of Solar Shortwave Radiation within Forest Canopy Based on a Computer Simulation Model[J]. Scientia Silvae Sinicae, 2024, 60(4): 16-30.
表1
试验树木与样地数据的详细信息"
信息 Information | 虚拟树 Virtual trees | 真实树 Real trees | ||||
芒果树 Mango tree | 橡胶树 Rubber tree | 紫薇树 Crape myrtle tree | 樱花树 Cherry tree | 多株香樟树(其中1株) One of camphor tree plot | ||
树高 Height/m | 1.7 | 5.3 | 2.4 | 3.5 | 15.3 | |
冠幅(E-W/N-S)Crown diameter/m | 1.81/1.58 | 3.85/4.04 | 2.02/1.87 | 3.04/2.43 | 6.51/7.79 | |
基径 Basal diameter/cm | 7.67 | 11.47 | 4.11 | 9.98 | 22.86 | |
叶片数 Total number of leaves | 1 636 | 12 141 | 1 692 | 4 181 | 9 549 | |
叶片长度/叶片宽度 Leaves length/leaves width/cm | 15.25±9.30/ 3.52±1.72 | 8.89±3.85/ 3.37±1.23 | 5.03±1.43/ 2.73±0.88 | 6.73±1.18/ 2.92±0.90 | 12.63±3.63/ 7.17±2.67 | |
点云总数(叶片/枝干)Total number of cloud points (leaf/branch) | 74 016 (58 748/ 15 268) | 341 752 (278 090/ 63 662) | 243 222 (207 827/ 35 395) | 1 090 674 (914 379/ 176 295) | 8 049 295 (6 595 432/ 1 453 863) | |
冠积 Tree crown volume/m3 | 1.58 | 23.07 | 2.67 | 7.47 | 159.43 | |
总叶面积 Total leaf area of the tree crown/m2 | 7.38 | 25.13 | 1.89 | 7.31 | 64.92 | |
垂直投影面积 Vertical projection area/m2 | 2.12 | 11.33 | 1.77 | 5.49 | 29.49 | |
叶面积指数 LAI (leaf area index) | 3.48 | 2.22 | 1.07 | 1.33 | 2.21 |
表2
2020年6月7日不同时间各试验林木冠层上方与下方辐射通量与实地测量值的验证比较"
试验林木 Experimental tree | 项目 Item | 9时 (模拟/测量) 9:00 (Simulated/Measured) | 12时 (模拟/测量) 12:00 (Simulated/Measured) | 15时 (模拟/测量) 15:00 (Simulated/Measured) |
紫薇树 Crape myrtle tree | 树冠投影面积Tree crown projection area/m2 | 1.59 | 1.71 | 1.66 |
树冠上层辐射通量Upper canopy radiant flux/W | 998.06/ 1 068.28±55.74 | 1 578.14/ 1 514.76±74.08 | 1 115.82/ 1 206.42±62.13 | |
树冠下层辐射通量Sub-canopy radiant flux/W | 757.49/ 781.02±78.41 | 1 086.55/ 968.08±91.28 | 813.84/ 929.67±84.26 | |
拦截效率 Interception efficiency(%) | 24.53/26.89 | 32.12/36.09 | 27.06/22.94 | |
樱花树 Cherry tree | 树冠投影面积Tree crown projection area/m2 | 5.25 | 5.38 | 5.48 |
树冠上层辐射通量Upper canopy radiant flux/W | 3 295.48/ 3 471.61±160.14 | 4 965.15/ 5 021.69±232.01 | 3 683.55/ 3 889.77±164.29 | |
树冠下层辐射通量Sub-canopy radiant flux/W | 2 276.79/ 2 306.54±224.47 | 2 933.47/ 3 157.14±281.68 | 2 521.66/ 2 767.57±242.84 | |
拦截效率 Interception efficiency(%) | 30.91/33.56 | 40.92/37.13 | 31.54/28.85 | |
多棵香樟树 Camphor tree plot | 树冠投影面积Tree crown projection area/m2 | 175.03 | 194.58 | 186.98 |
树冠上层辐射通量Upper canopy radiant flux/W | 109 869.34/ 113 792.76±6 266.90 | 179 572.43/ 184 488.98±9 755.77 | 125 686.50/ 133 796.65±7 097.15 | |
树冠下层辐射通量Sub-canopy radiant flux/W | 64 975.07/ 62 278.78±3 191.32 | 80 165.73/ 91 543.43±4 661.51 | 71 380.12/ 71 634.73±3 931.39 | |
拦截效率 Interception efficiency(%) | 40.86/45.27 | 55.36/50.38 | 43.21/46.46 |
表3
试验树冠中叶子与枝干包含的三角面片数量、场景上空发射的太阳光线数量与算法执行时间"
试验树 Experimental tree | 三角面片数量 The number of triangles | 发射光线数量 The number of emitted solar rays | 加速前执行时间 The execution time before acceleration/min | 加速后执行时间 The execution time after acceleration/min | 轴对齐包围盒加速效率Acceleration efficiency employing strategy of axis-aligned bounding box(%) |
芒果树 Mango tree | 177 604 | 5.30×105 | 26.7 | 10.6 | 60.3 |
橡胶树 Rubber tree | 635 126 | 2.83×106 | 114.1 | 31.6 | 72.4 |
紫薇树 Crape myrtle tree | 54 785 | 4.43×105 | 16.8 | 7.3 | 56.6 |
樱花树 Cherry tree | 205 407 | 1.37×106 | 67.9 | 19.4 | 71.5 |
多株香樟树 Camphor tree plot | 5 492 884 | 2.61×107 | 845.8 | 276.2 | 67.4 |
卞尊健, 漆建波, 吴胜标, 等. 光学遥感三维计算机模拟模型的研究进展与应用. 遥感学报, 2021, 25 (2): 559- 576.
doi: 10.11834/jrs.20219274 |
|
Bian Z J, Qi J B, Wu S B, et al. A review on the development and application of three dimensional computer simulation mode of optical remote sensing. National Remote Sensing Bulletin, 2021, 25 (2): 559- 576.
doi: 10.11834/jrs.20219274 |
|
陈士杰, 张森林, 刘妹琴, 等. 基于改进Delaunay三角剖分的水下地形三维重建算法. 计算机科学, 2020, 47 (11): 137- 141.
doi: 10.11896/jsjkx.191100051 |
|
Chen S J, Zhang S L, Liu M Q, et al. Underwater terrain three-dimensional reconstruction algorithm based on improved delaunay triangulation. Computer Science, 2020, 47 (11): 137- 141.
doi: 10.11896/jsjkx.191100051 |
|
崔日鲜. 山东省太阳总辐射的时空变化特征分析. 自然资源学报, 2014, 29 (10): 1780- 1791.
doi: 10.11849/zrzyxb.2014.10.013 |
|
Cui R X. The analysis of spatiotemporal variation characteristics of global solar radiation in Shandong Province. Journal of Natural Resources, 2014, 29 (10): 1780- 1791.
doi: 10.11849/zrzyxb.2014.10.013 |
|
戴秋丹, 郭振海, 孙菽芬, 等. 安徽省淮南森林冠层辐射传输过程的特征. 大气科学, 2021, 45 (1): 205- 216.
doi: 10.3878/j.issn.1006-9895.2004.19251 |
|
Dai Q D, Guo Z H, Sun S F, et al. Characteristics of solar radiation and radiative transfer of a forest canopy in Huainan, Anhui Province. Chinese Journal of Atmospheric Sciences, 2021, 45 (1): 205- 216.
doi: 10.3878/j.issn.1006-9895.2004.19251 |
|
李茂月, 马康盛, 王 飞, 等. 基于结构光在机测量的叶片点云预处理方法研究. 仪器仪表学报, 2020, 41 (8): 55- 66. | |
Li M Y, Ma K S, Wang F, et al. Research on the preprocessing method of blade point cloud based on structured light on-machine measurement. Chinese Journal of Scientific Instrument, 2020, 41 (8): 55- 66. | |
闵启忠. 基于CSF的无人机影像数据点云滤波算法实现与应用. 北京测绘, 2021, 35 (6): 707- 711. | |
Min Q Z. Implementation and application of point cloud filtering algorithm for UAV image data based on CSF. Beijing Surveying and Mapping, 2021, 35 (6): 707- 711. | |
田 静, 杜灵通, 潘海珠, 等. 贺兰山油松林冠层的辐射能量截获及传输利用特征. 水土保持学报, 2023, 37 (1): 289- 295. | |
Tian J, Du L T, Pan H Z, et al. Characteristics of radiation interception, transmission and utilization in the canopy of Pinus tabulaeformis forest in Helan Mountain. Journal of Soil and Water Conservation, 2023, 37 (1): 289- 295. | |
王新云, 过志峰, 覃文汉, 等. 三维森林场景生成方法研究. 计算机工程与应用, 2010, 46 (32): 166- 167,176.
doi: 10.3778/j.issn.1002-8331.2010.32.046 |
|
Wang X Y, Guo Z F, Qin W H, et al. Research to generate 3-dimensional forest scenes. Computer Engineering and Applications, 2010, 46 (32): 166- 167,176.
doi: 10.3778/j.issn.1002-8331.2010.32.046 |
|
徐希孺, 范闻捷, 李举材, 等. 植被二向性反射统一模型. 中国科学:地球科学, 2017, 47 (2): 217- 232.
doi: 10.1360/N072016-00082 |
|
Xu X R, Fan W J, Li J C, et al. A unified model of bidirectional reflectance distribution function for the vegetation canopy. Scientia Sinica (Terrae), 2017, 47 (2): 217- 232.
doi: 10.1360/N072016-00082 |
|
于瑞云, 赵金龙, 余 龙, 等. 结合轴对齐包围盒和空间划分的碰撞检测算法. 中国图象图形学报, 2018, 23 (12): 1925- 1937.
doi: 10.11834/jig.180050 |
|
Yu R Y, Zhao J L, Yu L, et al. Collision detection algorithm based on AABB bounding box and space division. Journal of Image and Graphics, 2018, 23 (12): 1925- 1937.
doi: 10.11834/jig.180050 |
|
张树兵, 王建中. 基于L系统的植物建模方法改进. 中国图象图形学报, 2002, 7 (5): 457- 460.
doi: 10.3969/j.issn.1006-8961.2002.05.006 |
|
Zhang S B, Wang J Z. Improvement of plant structure modeling based on L-system. Journal of Image and Graphics, 2002, 7 (5): 457- 460.
doi: 10.3969/j.issn.1006-8961.2002.05.006 |
|
张徐洲, 杜朋朋, 何 勇, 等. 植物BRDF研究及应用进展. 光谱学与光谱分析, 2017, 37 (3): 829- 835. | |
Zhang X Z, Du P P, He Y, et al. Review of research and application for vegetation BRDF. Spectroscopy and Spectral Analysis, 2017, 37 (3): 829- 835. | |
Bailey B N, Overby M, Willemsen P, et al. A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing. Agricultural and Forest Meteorology, 2014, 198/199, 192- 208.
doi: 10.1016/j.agrformet.2014.08.012 |
|
Bailey B N. A reverse ray-tracing method for modelling the net radiative flux in leaf-resolving plant canopy simulations. Ecological Modelling, 2018, 368, 233- 245.
doi: 10.1016/j.ecolmodel.2017.11.022 |
|
Bousquet L, Lachérade S, Jacquemoud S, et al. Leaf BRDF measurements and model for specular and diffuse components differentiation. Remote Sensing of Environment, 2005, 98 (2/3): 201- 211. | |
Brelsford C C, Nybakken L, Kotilainen T K, et al. The influence of spectral composition on spring and autumn phenology in trees. Tree Physiology, 2019, 39 (6): 925- 950.
doi: 10.1093/treephys/tpz026 |
|
Brine D T, Iqbal M. Diffuse and global solar spectral irradiance under cloudless skies. Solar Energy, 1983, 30 (5): 447- 453.
doi: 10.1016/0038-092X(83)90115-9 |
|
Comar A, Baret F, Obein G, et al. ACT: a leaf BRDF model taking into account the azimuthal anisotropy of monocotyledonous leaf surface. Remote Sensing of Environment, 2014, 143, 112- 121.
doi: 10.1016/j.rse.2013.12.006 |
|
Combes D, Bousquet L, Jacquemoud S, et al. A new spectrogoniophotometer to measure leaf spectral and directional optical properties. Remote Sensing of Environment, 2007, 109 (1): 107- 117.
doi: 10.1016/j.rse.2006.12.007 |
|
Cook R L, Torrance K E. A reflectance model for computer graphics. ACM Transactions on Graphics, 1982, 1 (1): 7- 24.
doi: 10.1145/357290.357293 |
|
Fan W L, Chen J M, Ju W M, et al. GOST: a geometric-optical model for sloping terrains. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (9): 5469- 5482.
doi: 10.1109/TGRS.2013.2289852 |
|
Gastellu-Etchegorry J P, Yin T, Lauret N, et al. Simulation of satellite, airborne and terrestrial LiDAR with DART (I): waveform simulation with quasi-Monte Carlo ray tracing. Remote Sensing of Environment, 2016, 184, 418- 435.
doi: 10.1016/j.rse.2016.07.010 |
|
Geng J, Chen J M, Fan W L, et al. GOFP: a geometric-optical model for forest plantations. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (9): 5230- 5241.
doi: 10.1109/TGRS.2017.2704079 |
|
Heitz E. Understanding the masking-shadowing function in microfacet-based BRDFs. Journal of Computer Graphics Techniques, 2014, 3 (2): 32- 91. | |
Huang H G, Qin W H, Liu Q H. RAPID: a radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes. Remote Sensing of Environment, 2013, 132, 221- 237.
doi: 10.1016/j.rse.2013.01.013 |
|
Kambezidis H D. The solar resource. Comprehensive Renewable Energy, 2012, 3, 27- 84. | |
Kawaguchi A T, Nishida N K, Osamu I, et al. The variability and seasonality in the ratio of photosynthetically active radiation to solar radiation: a simple empirical model of the ratio. International Journal of Applied Earth Observation and Geoinformation, 2022, 108, 1- 14. | |
Montes R, Ureña C. 2012. An overview of BRDF models. University of Grenada, Technical Report LSI-2012-001. | |
Oshio H, Asawa T. Estimating the solar transmittance of urban trees using airborne LiDAR and radiative transfer simulation. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (9): 5483- 5492.
doi: 10.1109/TGRS.2016.2565699 |
|
Papaioannou G, Papanikolaou N, Retalis D. Relationships of photosynthetically active radiation and shortwave irradiance. Theoretical and Applied Climatology, 1993, 48 (1): 23- 27.
doi: 10.1007/BF00864910 |
|
Ponce de León M A, Bailey B N. Evaluating the use of Beer’s law for estimating light interception in canopy architectures with varying heterogeneity and anisotropy. Ecological Modelling, 2019, 406, 133- 143.
doi: 10.1016/j.ecolmodel.2019.04.010 |
|
Qi J B, Xie D H, Jiang J Y, et al. 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters. Remote Sensing of Environment, 2022, 283, 113301.
doi: 10.1016/j.rse.2022.113301 |
|
Qi J B, Xie D H, Yin T G, et al. LESS: large-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sensing of Environment, 2019, 221, 695- 706.
doi: 10.1016/j.rse.2018.11.036 |
|
Roth B D, Saunders M G, Bachmann C M, et al. On leaf BRDF estimates and their fit to microfacet models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1761- 1771.
doi: 10.1109/JSTARS.2020.2988428 |
|
Shabanov N, Gastellu-Etchegorry J P. The stochastic Beer–Lambert–Bouguer law for discontinuous vegetation canopies. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 214, 18- 32.
doi: 10.1016/j.jqsrt.2018.04.021 |
|
Shi H Y, Xiao Z Q. The 4SAILT model: an improved 4SAIL canopy radiative transfer model for sloping terrain. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (7): 5515- 5525.
doi: 10.1109/TGRS.2020.3022874 |
|
Sinoquet H, Pincebourde S, Adam B, et al. 3-D maps of tree canopy geometries at leaf scale. Ecology, 2009, 90 (1): 283.
doi: 10.1890/08-0179.1 |
|
Walter B, Marschner S R, Li H S, et al. 2007. Microfacet models for refraction through rough surfaces. Proceedings of the 18th Eurographics Conference on Rendering Techniques, Grenoble: France,ACM,195−206. | |
Wong L T, Chow W K. Solar radiation model. Applied Energy, 2001, 69 (3): 191- 224.
doi: 10.1016/S0306-2619(01)00012-5 |
|
Xue X B, Jin S C, An F, et al. Shortwave radiation calculation for forest plots using airborne LiDAR data and computer graphics. Plant Phenomics, 2022, 1, 1- 21. | |
Yun T, An F, Li W Z, et al. A novel approach for retrieving tree leaf area from ground-based LiDAR. Remote Sensing, 2016, 8 (11): 942.
doi: 10.3390/rs8110942 |
|
Yun T, Cao L, An F, et al. Simulation of multi-platform LiDAR for assessing total leaf area in tree crowns. Agricultural and Forest Meteorology, 2019, 276, 1- 10. | |
Zhao F, Dai X, Verhoef W, et al. FluorWPS: a Monte Carlo ray-tracing model to compute Sun-induced chlorophyll fluorescence of three-dimensional canopy. Remote Sensing of Environment, 2016, 187, 385- 399.
doi: 10.1016/j.rse.2016.10.036 |
|
Zhu Y F, Li D N, Fan J C, et al. A reinterpretation of the gap fraction of tree crowns from the perspectives of computer graphics and porous media theory. Frontiers in Plant Science, 2023, 14, 1109443.
doi: 10.3389/fpls.2023.1109443 |
[1] | 于帅,蔡体久,张丕德,任铭磊,张海宇,琚存勇. 边缘校正方法对空间结构参数影响的尺度效应[J]. 林业科学, 2023, 59(10): 57-65. |
[2] | 杨晓慧,吴金卓,刘浩然,钟浩,林文树. 基于UAV-LiDAR的人工林林分郁闭度估测[J]. 林业科学, 2023, 59(8): 12-21. |
[3] | 屈彦成,江怡航,姜彦妍,张建国,罗安利,张雄清. 基于胸高处边材面积、胸径和冠基部直径的杉木单木叶生物量预测模型[J]. 林业科学, 2023, 59(7): 106-114. |
[4] | 马颢铜,金光泽,刘志理. 小兴安岭红松胸高断面积生长随树龄的变化规律及主要影响因素[J]. 林业科学, 2023, 59(7): 96-105. |
[5] | 何培,王君杰,辛士冬,张兹鹏,姜立春. 天然樟子松和兴安落叶松树干削度方程4种建模方法比较[J]. 林业科学, 2023, 59(6): 28-35. |
[6] | 曾伟生,蒲莹,杨学云,易善军. 我国5种主要人工林乔木层碳储量生长模型及其气候驱动分析[J]. 林业科学, 2023, 59(3): 21-30. |
[7] | 郭旭展,陈巧,张晓芳,洪亮,尤媛媛,唐守正,符利勇. 基于无人机高分辨率影像的油松新造林健康树冠提取[J]. 林业科学, 2022, 58(10): 111-120. |
[8] | 黄宏超,谢栋博,段光爽,张状,张海江,符利勇. 华北落叶松和白桦半参数树高曲线模型[J]. 林业科学, 2022, 58(10): 101-110. |
[9] | 张晓芳,郭旭展,洪亮,陈涛,符利勇,张会儒. 冬奥核心区华北落叶松和白桦单木冠幅预测模型——组级贝叶斯模型、加性模型和混合效应模型比较[J]. 林业科学, 2022, 58(10): 89-100. |
[10] | 陈星京,冯林艳,张宇超,刘清旺,杨朝晖,符利勇,白晋华. 基于机载激光雷达的崇礼冬奥核心区林分地上生物量反演[J]. 林业科学, 2022, 58(10): 35-46. |
[11] | 段光爽,郑亚丽,洪亮,宋新宇,符利勇. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价[J]. 林业科学, 2022, 58(10): 1-9. |
[12] | 姚建峰,郭旭展,符利勇,王雪峰,雷相东,卢军,郑一力,宋新宇. 微钻阻力法间接测量木材密度[J]. 林业科学, 2022, 58(9): 138-147. |
[13] | 姚慧芳,卢杰,曾加芹,罗大庆,张新生,王超,于德水. 藏东南川滇高山栎天然林的种内与种间竞争指数的海拔差异[J]. 林业科学, 2022, 58(8): 53-62. |
[14] | 张兹鹏,王君杰,刘索名,姜立春. 形率对白桦单木材积和生物量预测精度的影响[J]. 林业科学, 2022, 58(5): 31-39. |
[15] | 张国飞,章皖秋,岳彩荣. 基于TanDEM-X数据和改进三阶段算法反演森林冠层高度[J]. 林业科学, 2022, 58(4): 152-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||