林业科学 ›› 2023, Vol. 59 ›› Issue (3): 21-30.doi: 10.11707/j.1001-7488.LYKX20220033
• 前沿与重点:碳达峰、碳中和目标下林业碳汇能力提升 • 上一篇 下一篇
曾伟生1,蒲莹1,杨学云1,易善军2
收稿日期:
2022-01-18
出版日期:
2023-03-25
发布日期:
2023-05-27
基金资助:
Weisheng Zeng1,Ying Pu1,Xueyun Yang1,Shanjun Yi2
Received:
2022-01-18
Online:
2023-03-25
Published:
2023-05-27
摘要:
目的: 研建我国5种主要人工林(杉木林、杨树林、桉树林、落叶松林和马尾松林)乔木层碳储量生长模型,确定碳储量平均生长量最大时的林龄,分析固碳能力差异及其受气候因子的影响,为提升人工林碳汇能力和制定森林可持续经营决策提供科学依据。方法: 基于第九次全国森林资源清查8 520块样地碳储量数据,采用非线性加权回归方法和可变参数模型,研建5种主要人工林乔木层碳储量生长模型,分析年均气温、年均降水量对模型参数的影响,并比较5种人工林乔木层固碳能力的差异。结果: 5种主要人工林乔木层碳储量生长模型的平均预估误差在5%以内,模型自检和独立交叉检验的总体相对误差在3%以内。落叶松林、马尾松林、杉木林、杨树林和桉树林乔木层碳储量年均生长量最大时的林龄分别为24、16、12、6和2年,对应的年均生长量分别为1.50、1.85、2.10、2.96和6.97 t?hm?2;马尾松、杉木、杨树和桉树人工林乔木层碳储量最大平均生长量分别是落叶松人工林的1.23、1.40、1.97和4.65倍。年均气温每下降1 ℃,杨树林、马尾松林、桉树林和落叶松林乔木层碳储量年均生长量分别降低7.6%、4.5%、4.4%和3.0%;年均降水量每减少100 mm,落叶松林乔木层碳储量年均生长量降低5.8%,杨树林和桉树林乔木层碳储量年均生长量反而略呈增加趋势。结论: 我国5种主要人工林乔木层固碳能力从高到低依次为桉树林、杨树林、杉木林、马尾松林、落叶松林,均不同程度受年均气温和年均降水量的影响,其中受影响最大的是杨树林,其次是落叶松林、马尾松林和桉树林,杉木林受影响不显著。为发挥我国人工林固碳潜力,应参考其碳储量生长过程合理确定经营周期,并在统筹区域发展的基础上努力发展桉树和杨树人工林。
中图分类号:
曾伟生,蒲莹,杨学云,易善军. 我国5种主要人工林乔木层碳储量生长模型及其气候驱动分析[J]. 林业科学, 2023, 59(3): 21-30.
Weisheng Zeng,Ying Pu,Xueyun Yang,Shanjun Yi. Growth Models and Its Climate-Driven Analysis of Carbon Storage in Tree Layers of Five Major Plantation Types in China[J]. Scientia Silvae Sinicae, 2023, 59(3): 21-30.
表1
5种人工林建模变量的统计特征数①"
人工林类型Plantation type | 变量Variable | 最小值Min. | 最大值Max. | 平均值Mean | 标准差Standarddeviation | 变动系数Coefficient ofvariation(%) |
落叶松 Larix spp. | 碳储量Carbon storage /(t?hm?2) | 0.1 | 129.2 | 33.8 | 25.6 | 75.9 |
林龄 Stand age /a | 5 | 59 | 24.8 | 12.3 | 49.5 | |
马尾松 Pinus massoniana | 碳储量Carbon storage /(t?hm?2) | 0.0 | 134.5 | 37.7 | 26.1 | 69.3 |
林龄Stand age /a | 3 | 60 | 24.4 | 11.2 | 46.0 | |
杉木Cunninghamia lanceolata | 碳储量Carbon storage /(t?hm?2) | 0.0 | 130.4 | 29.7 | 23.8 | 79.8 |
林龄Stand age /a | 3 | 54 | 17.0 | 10.2 | 59.9 | |
杨树 Populus spp. | 碳储量Carbon storage /(t?hm?2) | 0.0 | 118.9 | 25.6 | 19.4 | 75.8 |
林龄Stand age /a | 1 | 20 | 10.2 | 4.4 | 43.3 | |
桉树Eucalyptus spp. | 碳储量Carbon storage /(t?hm?2) | 0.1 | 148.1 | 28.6 | 21.8 | 76.4 |
林龄Stand age /a | 1 | 16 | 4.6 | 3.1 | 66.7 |
表2
5种人工林的气候因子平均值及变化范围"
人工林类型Plantation type | 年均降水量Mean annual precipitation /mm | 年均气温Mean annual temperature /℃ | |||||
平均值Mean | 最小值Min. | 最大值Max. | 平均值Mean | 最小值Min. | 最大值Max. | ||
落叶松 Larix spp. | 568 | 257 | 1 223 | 7 | 0 | 15 | |
马尾松 Pinus massoniana | 1 338 | 740 | 2 293 | 16 | 12 | 20 | |
杉木 Cunninghamia lanceolata | 1 449 | 694 | 2 222 | 17 | 10 | 22 | |
杨树 Populus spp. | 696 | 79 | 1 583 | 13 | 3 | 18 | |
桉树 Eucalyptus spp. | 1 439 | 672 | 1 984 | 19 | 12 | 23 |
表3
模型(1)和(2)的参数估计值和评价指标"
人工林类型Plantation type | 模型Model | 参数估计值 Parameter estimates | 评价指标 Evaluation indices | ||||||
a | b | c | R2 | SEE/(t?hm?2) | MPE(%) | TRE(%) | |||
落叶松 Larix spp. | (1) | 66.114 | 0.059 526 | 2.224 8 | 0.420 | 19.55 | 3.47 | 0.56 | |
(2) | 51.097 | 19.329 | 0.166 33 | 0.391 | 20.02 | 3.56 | 2.73 | ||
马尾松 Pinus massoniana | (1) | 55.446 | 0.083 625 | 2.060 4 | 0.287 | 22.08 | 4.05 | 0.96 | |
(2) | 45.577 | 18.167 | 0.229 57 | 0.254 | 22.59 | 4.14 | 4.04 | ||
杉木Cunninghamia lanceolata | (1) | 53.059 | 0.092 661 | 1.871 0 | 0.381 | 18.69 | 2.37 | 0.40 | |
(2) | 44.136 | 15.178 | 0.252 76 | 0.367 | 18.91 | 2.39 | 2.54 | ||
杨树 Populus spp. | (1) | 39.347 | 0.171 49 | 1.801 8 | 0.215 | 17.20 | 2.46 | 0.40 | |
(2) | 33.026 | 12.974 | 0.442 64 | 0.206 | 17.30 | 2.51 | 1.81 | ||
桉树 Eucalyptus spp. | (1) | 67.640 | 0.147 01 | 1.155 0 | 0.297 | 18.31 | 3.94 | -0.45 | |
(2) | 42.016 | 15.030 | 0.999 91 | 0.293 | 18.37 | 4.13 | 4.60 |
表4
模型(3)的参数估计值"
人工林类型Plantation type | 固定参数Constant parameter | 可变参数Variable parameter | ||||||||
a0 | b0 | c0 | a1 | a2 | b1 | b2 | c1 | c2 | ||
落叶松 Larix spp. | 69.041 | 0 | 0 | ?40.976 | 28.354 | 0.194 33 | ?0.043 74 | 5.2 510 | 0 | |
马尾松 Pinus massoniana | 53.171 | 0.107 00 | 8.6 018 | 0 | 0 | 0 | 0 | 0 | ?3.353 5 | |
杉木 Cunninghamia lanceolata | 53.059 | 0.092 66 | 1.8 710 | 0 | 0 | 0 | 0 | 0 | 0 | |
杨树 Populus spp. | 5.0 416 | 0.086 93 | 2.0 162 | 0 | 27.642 | ?0.072 38 | 0.117 05 | 0 | 0 | |
桉树 Eucalyptus spp. | 67.640 | 0.025 11 | 1.1 550 | 0 | 0 | ?0.017 14 | 0.079 11 | 0 | 0 |
表6
5种人工林类型不同林龄时的乔木层碳储量年均生长量对比"
人工林类型Plantation type | 年均生长量 Average carbon growth /(t?hm?2) | ||||
5 | 10 | 15 | 20 | 最大值Max. | |
落叶松 Larix spp. | 0.65 | 1.11 | 1.37 | 1.48 | 1.50 |
马尾松 Pinus massoniana | 1.21 | 1.72 | 1.85 | 1.81 | 1.85 |
杉木 Cunninghamia lanceolata | 1.66 | 2.07 | 2.07 | 1.93 | 2.10 |
杨树 Populus spp. | 2.91 | 2.75 | 2.27 | 1.85 | 2.96 |
桉树 Eucalyptus spp. | 6.36 | 5.00 | 4.13 | 3.18 | 6.97 |
曹 磊, 刘晓彤, 李海奎, 等 广东省常绿阔叶林生物量生长模型. 林业科学研究, 2020, 33 (5): 61- 67.
doi: 10.13275/j.cnki.lykxyj.2020.05.008 |
|
Cao L, Liu X T, Li H K, et al Biomass growth models for evergreen broad-leaved forests in Guangdong. Forest Research, 2020, 33 (5): 61- 67.
doi: 10.13275/j.cnki.lykxyj.2020.05.008 |
|
符利勇, 曾伟生, 唐守正 利用混合模型分析地域对国内马尾松生物量的影响. 生态学报, 2011, 31 (19): 5797- 5808. | |
Fu L Y, Zeng W S, Tang S Z Analysis the effect of region impacting on the biomass of domestic masson pine using mixed model. Acta Ecologica Sinica, 2011, 31 (19): 5797- 5808. | |
高东启, 邓华锋, 王海宾 基于哑变量的蒙古栎林分生长模型. 东北林业大学学报, 2014, 42 (1): 61- 64.
doi: 10.13759/j.cnki.dlxb.2014.01.014 |
|
Gao D Q, Deng H F, Wang H B Dummy variables models in Quercus mongolia growth . Journal of Northeast Forestry University, 2014, 42 (1): 61- 64.
doi: 10.13759/j.cnki.dlxb.2014.01.014 |
|
国家林业和草原局. 2019. 中国森林资源报告(2014—2018). 北京: 中国林业出版社, 26-29. | |
National Forestry and Grassland Administration. 2019. China forest resources report (2014-2018). Beijing: China Forestry Publishing House, 26-29. [in Chinese] | |
国家林业局. 2014a. 立木生物量模型及碳计量参数——马尾松(LY/T 2263—2014). 北京: 中国标准出版社. | |
State Forestry Administration. 2014a. Tree biomass models and related parameters to carbon accounting for Pinus massoniana (LY/T 2263-2014). Beijing: China Standard Press. [in Chinese] | |
国家林业局. 2014b. 立木生物量模型及碳计量参数——杉木(LY/T 2264—2014). 北京: 中国标准出版社. | |
State Forestry Administration. 2014b. Tree biomass models and related parameters to carbon accounting for Cunninghamia lanceolata (LY/T 2264-2014). Beijing: China Standard Press. [in Chinese] | |
国家林业局. 2016. 立木生物量模型及碳计量参数——落叶松(LY/T 2654—2016). 北京: 中国标准出版社. | |
State Forestry Administration. 2016. Tree biomass models and related parameters to carbon accounting for Larix (LY/T 2654-2016). Beijing: China Standard Press. [in Chinese] | |
何 潇, 雷渊才, 薛春泉, 等 广东省木荷碳密度及其不确定性估计. 林业科学, 2019, 55 (11): 163- 171.
doi: 10.11707/j.1001-7488.20191118 |
|
He X, Lei Y C, Xue C Q, et al Carbon density uncertainty estimates for Schima superba in Guangdong Province . Scientia Silvae Sinicae, 2019, 55 (11): 163- 171.
doi: 10.11707/j.1001-7488.20191118 |
|
亢新刚, 崔相慧, 王 虹 冀北次生林3个树种林分生长过程表的编制. 北京林业大学学报, 2001, 23 (3): 39- 42.
doi: 10.3321/j.issn:1000-1522.2001.03.009 |
|
Kang X Q, Cui X H, Wang H Compilation of stand growth table for 3 tree species of secondary forest in north Hebei Province. Journal of Beijing Forestry University, 2001, 23 (3): 39- 42.
doi: 10.3321/j.issn:1000-1522.2001.03.009 |
|
励龙昌 以潜能函数建立单木生长模型. 东北林业大学学报, 1990, 18 (4): 22- 28.
doi: 10.13759/j.cnki.dlxb.1990.04.003 |
|
Li L C Construct individual tree growth model based on potential function. Journal of Northeast Forestry University, 1990, 18 (4): 22- 28.
doi: 10.13759/j.cnki.dlxb.1990.04.003 |
|
刘 强, 李凤日, 董利虎 基于树冠竞争因子的落叶松人工林单木生长模型. 植物研究, 2014, 34 (4): 547- 553. | |
Liu Q, Li F R, Dong L H Individual tree growth model of larch plantation based on crown competition factors. Bulletin of Botanical Research, 2014, 34 (4): 547- 553. | |
刘四海, 曾伟生 马尾松宏观尺度的单木生长模型研究. 林业资源管理, 2017, (2): 28- 33. | |
Liu S H, Zeng W S Large-scale individual tree growth models for Pinus massoniana in China . Forest Resources Management, 2017, (2): 28- 33. | |
刘魏魏, 王效科, 逯 非, 等 全球森林生态系统碳储量、固碳能力估算及其区域特征. 应用生态学报, 2015, 26 (9): 2881- 2890.
doi: 10.13287/j.1001-9332.20150630.005 |
|
Liu W W, Wang X K, Lu F, et al Regional and global estimates of carbon stocks and carbon sequestration capability in forest ecosystems: a review. Chinese Journal of Applied Ecology, 2015, 26 (9): 2881- 2890.
doi: 10.13287/j.1001-9332.20150630.005 |
|
骆期邦, 曾伟生, 彭长清 可变参数相对树高曲线模型及其应用研究. 林业科学, 1997, 33 (3): 202- 211.
doi: 10.3321/j.issn:1001-7488.1997.03.002 |
|
Luo Q B, Zeng W S, Peng C Q Variable relative tree height curve model and its application in tree volume estimation. Scientia Silvae Sinicae, 1997, 33 (3): 202- 211.
doi: 10.3321/j.issn:1001-7488.1997.03.002 |
|
马丰丰, 贾黎明 林分生长和收获模型研究进展. 世界林业研究, 2008, 21 (3): 21- 27.
doi: 10.13348/j.cnki.sjlyyj.2008.03.005 |
|
Ma F F, Jia L M Advances in the researches of stand growth and yield model. World Forestry Research, 2008, 21 (3): 21- 27.
doi: 10.13348/j.cnki.sjlyyj.2008.03.005 |
|
邱学清, 江希钿, 黄健儿, 等 杉木人工林竞争指数及单木生长模型的研究. 福建林学院学报, 1992, 12 (3): 309- 316. | |
Qiu X Q, Jiang X D, Huang J E, et al Study of competitive index and individual growing model of Chinese fir plantation. Journal of Fujian College of Forestry, 1992, 12 (3): 309- 316. | |
任瑞娟, 亢新刚, 杨 华 天然林单木生长模型研究进展. 西北林学院学报, 2008, 23 (6): 203- 206. | |
Ren R J, Kang X G, Yang H Review on growth model of individual tree in nature forest. Journal of Northwest Forestry University, 2008, 23 (6): 203- 206. | |
唐守正, 郎奎建, 李海奎. 2008. 统计和生物数学模型计算(ForStat教程). 北京: 科学出版社. | |
Tang S Z, Lang K J, Li H K. 2008. Statistics and computation of biomathematical models (ForStat tutorial). Beijing: Science Press. [in Chinese] | |
魏晓慧, 孙玉军, 马 炜 基于Richards方程的杉木树高生长模型. 浙江农林大学学报, 2012, 29 (5): 661- 666.
doi: 10.11833/j.issn.2095-0756.2012.05.004 |
|
Wei X H, Sun Y J, Ma W A height growth model for Cunninghamia lanceolata based on Richards equation . Journal of Zhejiang A & F University, 2012, 29 (5): 661- 666.
doi: 10.11833/j.issn.2095-0756.2012.05.004 |
|
魏占才 长白落叶松人工林林分模型的应用. 东北林业大学学报, 2006, 34 (4): 31- 33.
doi: 10.3969/j.issn.1000-5382.2006.04.012 |
|
Wei Z C Application of stand models of Larix olgensis plantations . Journal of Northeast Forestry University, 2006, 34 (4): 31- 33.
doi: 10.3969/j.issn.1000-5382.2006.04.012 |
|
吴 恒, 胥 辉 四川省主要乔木林类型碳汇速率及储量动态分析. 林业资源管理, 2021, (5): 47- 55.
doi: 10.13466/j.cnki.lyzygl.2021.05.007 |
|
Wu H, Xu H Carbon sequestration rate and dynamic analysis of main arbor forest types in Sichuan province. Forest Resources Management, 2021, (5): 47- 55.
doi: 10.13466/j.cnki.lyzygl.2021.05.007 |
|
薛春泉, 徐期瑚, 林丽平, 等 广东主要乡土阔叶树种含年龄和胸径的单木生物量模型. 林业科学, 2019, 55 (2): 97- 108. | |
Xue C Q, Xu Q H, Lin L P, et al Biomass models with breast height diameter and age for main native tree species in Guangdong Province. Scientia Silvae Sinicae, 2019, 55 (2): 97- 108. | |
尹晶萍, 张煜星, 付 尧, 等 中国碳排放与森林植被碳吸收潜力研究. 林业资源管理, 2021, (3): 53- 61. | |
Yin J P, Zhang Y X, Fu Y, et al The research of carbon emission and carbon sequestration potential of forest vegetation in China. Forest Resources Management, 2021, (3): 53- 61. | |
曾伟生 加权回归估计中不同权函数的对比分析. 林业资源管理, 2013, (5): 55- 61.
doi: 10.13466/j.cnki.lyzygl.2013.05.019 |
|
Zeng W S Comparison of different weight functions in weighted regression. Forest Resources Management, 2013, (5): 55- 61.
doi: 10.13466/j.cnki.lyzygl.2013.05.019 |
|
曾伟生, 陈新云, 杨学云 我国人工杨树的生物量建模和生产力分析. 林业科学, 2019, 55 (11): 1- 8.
doi: 10.11707/j.1001-7488.20191101 |
|
Zeng W S, Chen X Y, Yang X Y Biomass modeling and productivity analysis of planted Populus spp . in China. Scientia Silvae Sinicae, 2019, 55 (11): 1- 8.
doi: 10.11707/j.1001-7488.20191101 |
|
曾伟生, 骆期邦, 贺东北 论加权回归与建模. 林业科学, 1999, 35 (5): 5- 11.
doi: 10.3321/j.issn:1001-7488.1999.05.002 |
|
Zeng W S, Luo Q B, He D B Research on weighted regression and modeling. Scientia Silvae Sinicae, 1999, 35 (5): 5- 11.
doi: 10.3321/j.issn:1001-7488.1999.05.002 |
|
曾伟生, 唐守正 非线性模型对数回归的偏差校正及与加权回归的对比分析. 林业科学研究, 2011a, 24 (2): 137- 143. | |
Zeng W S, Tang S Z Bias correction in logarithmic regression and comparison with weighted regression for nonlinear models. Forest Research, 2011a, 24 (2): 137- 143. | |
曾伟生, 唐守正 立木生物量模型的优度评价和精度分析. 林业科学, 2011b, 47 (11): 106- 113. | |
Zeng W S, Tang S Z Goodness evaluation and precision analysis of tree biomass equations. Scientia Silvae Sinicae, 2011b, 47 (11): 106- 113. | |
曾伟生, 唐守正, 夏忠胜, 等 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程. 林业科学研究, 2011c, 24 (3): 285- 291. | |
Zeng W S, Tang S Z, Xia Z S, et al Using linear mixed model and dummy variable model approaches to construct generalized single tree biomass equations in Guizhou. Forest Research, 2011c, 24 (3): 285- 291. | |
赵 菡, 雷渊才, 符利勇 江西省不同立地等级的马尾松林生物量估计和不确定性度量. 林业科学, 2017, 53 (8): 81- 93.
doi: 10.11707/j.1001-7488.20170810 |
|
Zhao H, Lei Y C, Fu L Y Biomass and uncertainty estimates of Pinus massoniana forest for different site classes in Jiangxi Province . Scientia Silvae Sinicae, 2017, 53 (8): 81- 93.
doi: 10.11707/j.1001-7488.20170810 |
|
邹佳勇 森林生态系统碳储量和固碳能力研究进展. 中国林业经济, 2017, (4): 74- 75.
doi: 10.13691/j.cnki.cn23-1539/f.2017.04.025 |
|
Zou J Y Advances in research on forest ecosystem carbon reserves and solid carbon ability. China Forestry Economics, 2017, (4): 74- 75.
doi: 10.13691/j.cnki.cn23-1539/f.2017.04.025 |
|
Du X, Chen X Y, Zeng W S, et al A climate-sensitive transition matrix growth model for uneven-aged mixed-species oak forests in North China. Forestry, 2021, 94 (2): 258- 277.
doi: 10.1093/forestry/cpaa035 |
|
Guo H, Lei X D, You L, et al Climate-sensitive diameter distribution models of larch plantations in north and northeast China. Forest Ecology and Management, 2022, 506 (2022): 119947.
doi: 10.1016/j.foreco.2021.119947 |
|
Zeng W S. 2020. Assessment of individual tree above- and below-ground biomass models for 34 tree species in China // Elangovan P. New ideas concerning science and technology, volume 2. India: Book Publisher International, 26−37. | |
Zeng W S, Duo H R, Lei X D, et al Individual tree biomass and growth models sensitive to climate variables for Larix spp . in China. European Journal of Forest Research, 2017, 136 (2): 233- 249.
doi: 10.1007/s10342-017-1024-9 |
|
Zeng W S, Zhang H R, Tang S Z Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales—a case study for masson pine (Pinus massoniana) in southern China . Canadian Journal of Forest Research, 2011, 41 (7): 1547- 1554.
doi: 10.1139/x11-068 |
[1] | 张煜星, 王雪军. 1973—2018年我国桉树人工林生产力及碳汇能力[J]. 林业科学, 2023, 59(3): 54-64. |
[2] | 程春香,于敏,毛子军,谢连妮,张永成,孙涛,徐作敏,吴双,荔千妮,徐嘉. 中国生态保护修复进程下的黑龙江省NPP时空演变及突变模式[J]. 林业科学, 2022, 58(7): 23-31. |
[3] | 田惠玲,朱建华,何潇,陈新云,简尊吉,李宸宇,郭学媛,黄国胜,肖文发. 基于随机森林模型的东北三省乔木林生物质碳储量预测[J]. 林业科学, 2022, 58(4): 40-50. |
[4] | 赵厚本,周光益,李兆佳,邱治军,吴仲民,王旭. 南亚热带常绿阔叶林4个常见树种的生物量分配特征与异速生长模型[J]. 林业科学, 2022, 58(2): 23-31. |
[5] | 侯志康,曾松伟,莫路锋,周宇峰. 基于GA-BP神经网络的雷竹林CO2浓度反演[J]. 林业科学, 2022, 58(2): 42-48. |
[6] | 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响[J]. 林业科学, 2021, 57(10): 102-110. |
[7] | 王雪峰,陈珠琳,管青军,刘嘉政,王甜,袁莹. 基于林内图像的单位面积碳储量估计方法[J]. 林业科学, 2021, 57(1): 105-112. |
[8] | 张会儒,雷相东,李凤日. 中国森林经理学研究进展与展望[J]. 林业科学, 2020, 56(9): 130-142. |
[9] | 胡松,朱光玉,陈振雄,卢侃,黄朗,刘卓. 基于林层划分的湖南栎类天然次生林断面积生长模型[J]. 林业科学, 2020, 56(9): 184-192. |
[10] | 王振鹏,陈金磊,李尚益,张仕吉,方晰. 湘中丘陵区不同恢复阶段森林生态系统的碳储量特征[J]. 林业科学, 2020, 56(5): 19-28. |
[11] | 张晓玮,王婧如,王明浩,杨毅,赵长明. 中国云杉属树种地理分布格局的主导气候因子[J]. 林业科学, 2020, 56(4): 1-11. |
[12] | 武金翠,周军,张宇,余晓燕,石雷,漆良华. 毛竹林固碳增汇价值的动态变化:以福建省为例[J]. 林业科学, 2020, 56(4): 181-187. |
[13] | 朱万泽. 成熟森林固碳研究进展[J]. 林业科学, 2020, 56(3): 117-126. |
[14] | 赵志江, 郭文霞, 康东伟, 崔莉, 赵联军, 李俊清. 川西亚高山岷江冷杉和紫果云杉径向生长对气候因子的响应[J]. 林业科学, 2019, 55(7): 1-16. |
[15] | 张英凯,刘鹏举,刘长春,任怡. 基于空间聚类的杉木生长预测方法[J]. 林业科学, 2019, 55(11): 137-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||