欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (4): 33-45.doi: 10.11707/j.1001-7488.LYKX20240688

• 专题:智慧林业 • 上一篇    

基于特征融合的复杂场景树种跨域泛化分类模型

陈广胜, 温林郅, 张文均, 李超, 于鸣, 景维鹏   

  1. 东北林业大学 哈尔滨 150040
  • 收稿日期:2024-11-17 修回日期:2025-01-17 发布日期:2025-04-21
  • 通讯作者: 景维鹏为通信作者。E-mail:jwp@nefu.edu.cn。
  • 基金资助:
    国家自然科学基金面上项目(32271865)。

A Cross-Domain Generalization Classification Model for Tree Species in Complex Scenes Based on Feature Fusion

Chen Guangsheng, Wen Linzhi, Zhang Wenjun, Li Chao, Yu Ming, Jing Weipeng   

  1. Northeast Forestry University Harbin 150040
  • Received:2024-11-17 Revised:2025-01-17 Published:2025-04-21

摘要: 目的 针对不同区域因气候、土壤等生态因子差异导致的域偏移问题,提出一种基于全局-局部特征融合的单域泛化方法,提升复杂森林场景下无标签树种识别的泛化性能,为跨域树种分类研究提供理论依据和实践支持。方法 选取德国巴登-符腾堡州南部和中国黄山市祁门县西部为源域,德国图林根州中部和中国黄山市祁门县东部为目标域,构建一种全局-局部特征融合网络(HUFNet)模型进行树种分类,HUFNet模型包含基于CNN的编码器层、基于Transformer的解码器层、全局-局部特征融合机制(GLAFE)、特征精炼头(FRH)和边界优化模块(ERV)。模型经源域数据集训练后,在目标域上测试验证其泛化能力,实现复杂场景跨域树种分类。结果 通过多个源域和目标域数据集的对比验证,HUFNet模型在目标域HainichUAV数据集上对针叶和阔叶树种的分类总体准确率(OA)为75.1%,平均交并比(mIoU)为58.3%,相比基于自注意力机制的分类架构分别提升13.7%与11.7%。在目标域HuangshanEast数据集上,HUFNet模型的OA为71.7%,mIoU为56.8%,相比ViT-R50作为编码器的混合架构,OA提升1.2%。结论 HUFNet模型的跨域树种分类性能明显提升,不仅保持了高精度的识别能力,而且在目标域上展现出强大的跨域泛化能力,同时大幅降低了模型的时间复杂度和空间复杂度,适用于资源受限的环境。该模型基于全局-局部特征融合的单域泛化方法,为跨域树种分类提供了新的研究思路。

关键词: 遥感影像, 树种分类, 单域泛化, 语义分割, 轻量化模型

Abstract: Objective This study aims to address domain shifts caused by regional variations in ecological factors, such as climate and soil, for which a single-domain generalization method was proposed based on global-local feature fusion, so as to enhance the generalization performance of unlabeled tree species recognition in complex forest scenes and provide new method support for cross-regional tree classification research. Method The southern part of Baden-Württemberg, Germany, and the western part of Qimen County, Huangshan City, China, were selected as the source domains, while the central part of Thuringia, Germany, and the eastern part of Qimen County, Huangshan City, China, were selected as the target domains. A global-local feature fusion network (hierarchical unified feature network, HUFNet) was constructed for tree species classification. This network consists of a CNN-based encoder layer, a Transformer-based decoder layer, a Global–Local Attention Feature Extraction (GLAFE) mechanism, a Feature Refinement Head (FRH), and an Edge Refinement and Validation (ERV) module. The model was trained on the source domain datasets and then tested on the target domain to validate its generalization ability, achieving cross-domain tree species classification in complex scenarios.Result By comparing multiple source and target domain datasets, the HUFNet model achieved an overall accuracy (OA) of 75.1% and a mean intersection over union (mIoU) of 58.3% for the classification of coniferous and broadleaf tree species on the target domain HainichUAV dataset. Compared to the classification architecture based on self-attention mechanisms, the model improved OA and mIoU by 13.7% and 11.7%, respectively. On the HuangshanEast target domain dataset, the HUFNet model achieved OA of 71.7% and mIoU of 56.8%. Compared to the hybrid architecture using ViT-R50 as the encoder, the OA was improved by 1.2%. Conclusion The HUFNet model proposed in this study achieves significant improvements in cross-regional tree species classification, it not only maintains the high-precision recognition ability, but also shows the powerful cross-domain generalization ability in the target domain, and greatly reduces the time and space complexity of the model. It shows strong application potential in resource-constrained environments. The single-domain generalization approach based on global-local feature fusion provides a novel perspective for cross-domain tree species classification in advancing research.

Key words: remote sensing imagery, tree species classification, single-domain generalization, semantic segmentation, lightweight model

中图分类号: