|
冯鹏飞, 李玉敏. 2021年中国竹资源报告. 世界竹藤通讯, 2023, 21 (2): 100- 103.
|
|
Feng P F, Li Y M. China's bamboo resources in 2021. World Bamboo and Rattan, 2023, 21 (2): 100- 103.
|
|
栗青丽, 王灵杰, 高培军, 等. 竹茎秆快速生长期淀粉分解相关酶基因表达的分析. 浙江农林大学学报, 2020, 37 (6): 1128- 1135.
doi: 10.11833/j.issn.2095-0756.20190661
|
|
Li Q L, Wang L J, Gao P J, et al. Gene expression of starch decomposing enzymes in Phyllostachys edulis stems during the rapid growth period. Journal of Zhejiang A& F University, 2020, 37 (6): 1128- 1135.
doi: 10.11833/j.issn.2095-0756.20190661
|
|
王宇迪, 赵东方, 李新国, 等. 2023. 香蕉β-淀粉酶基因MaBAM9b在水稻中的功能分析. 分子植物育种: 1–14. https://link.cnki.net/urlid/46.1068.S.20231120.0859.004.
|
|
Wang Y D, Zhao D F, Li X G, et al. 2023. Functional analysis of banana β-amylase gene MaBAM9b in rice. Molecular Plant Breeding: 1–14. [in Chinese]https://link.cnki.net/urlid/46.1068.S.20231120.0859.004
|
|
David L C, Lee S K, Bruderer E, et al. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation. Plant Physiology, 2022, 188 (1): 191- 207.
doi: 10.1093/plphys/kiab468
|
|
Fan C J, Ma J M, Guo Q R, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One, 2013, 8 (2): e56573.
doi: 10.1371/journal.pone.0056573
|
|
Fu J B, Zhao Y Y, Zhou Y, et al. 2024. MrERF039 transcription factor plays an active role in the cold response of Medicago ruthenica as a sugar molecular switch. Plant, Cell & Environment, 47(5): 1834–1851.
|
|
Fulton D C, Stettler M, Mettler T, et al. β-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. The Plant Cell, 2008, 20 (4): 1040- 1058.
doi: 10.1105/tpc.107.056507
|
|
Gunaseelan K, McAtee P A, Nardozza S, et al. Copy number variants in kiwifruit ETHYLENE RESPONSE FACTOR/APETALA2 (ERF/AP2)-like genes show divergence in fruit ripening associated cold and ethylene responses in C-REPEAT/DRE BINDING FACTOR-like genes. PLoS One, 2019, 14 (5): e0216120.
doi: 10.1371/journal.pone.0216120
|
|
Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994, 6 (2): 271- 282.
doi: 10.1046/j.1365-313X.1994.6020271.x
|
|
Hirano T, Takahashi Y, Fukayama H, et al. Identification of two plastid-targeted β-amylases in rice. Plant Production Science, 2011, 14 (4): 318- 324.
doi: 10.1626/pps.14.318
|
|
Horrer D, Flütsch S, Pazmino D, et al. Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Current Biology, 2016, 26 (3): 362- 370.
doi: 10.1016/j.cub.2015.12.036
|
|
Kaplan F, Guy C L. RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. The Plant Journal, 2005, 44 (5): 730- 743.
doi: 10.1111/j.1365-313X.2005.02565.x
|
|
Li C, Godwin I D, Gilbert R G. Diurnal changes in Sorghum leaf starch molecular structure. Plant Science, 2015, 239, 147- 154.
doi: 10.1016/j.plantsci.2015.07.026
|
|
Liu L B, Zhou J Y, Zhang J T, et al. MdBAM17, a novel member of the β-amylase gene family, positively regulates starch degradation in ALA-induced stomatal opening in apple (Malus × domestica). Horticultural Plant Journal, 2024, 11 (2): 504- 519.
|
|
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25 (4): 402- 408.
doi: 10.1006/meth.2001.1262
|
|
Ma X L, Zhao H S, Xu W Y, et al. Co-expression gene network analysis and functional module identification in bamboo growth and development. Frontiers in Genetics, 2018, 9, 574.
doi: 10.3389/fgene.2018.00574
|
|
Ma X L, Zhao H S, Yan H Y, et al. Refinement of bamboo genome annotations through integrative analyses of transcriptomic and epigenomic data. Computational and Structural Biotechnology Journal, 2021, 19, 2708- 2718.
doi: 10.1016/j.csbj.2021.04.068
|
|
Maeo K, Nakaya Y, Mitsuda N, et al. ACRE, a class of AP2/ERF transcription factors, activates the expression of sweet potato ß-amylase and sporamin genes through the sugar-responsible element CMSRE-1. Plant Molecular Biology, 2024, 114 (3): 54.
doi: 10.1007/s11103-024-01450-z
|
|
Monroe J D. Involvement of five catalytically active Arabidopsis β-amylases in leaf starch metabolism and plant growth. Plant Direct, 2020, 4 (2): e00199.
doi: 10.1002/pld3.199
|
|
Reinhold H, Soyk S, Šimková K, et al. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23 (4): 1391- 1403.
doi: 10.1105/tpc.110.081950
|
|
Scheidig A, Fröhlich A, Schulze S, et al. Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. The Plant Journal, 2002, 30 (5): 581- 591.
doi: 10.1046/j.1365-313X.2002.01317.x
|
|
Seung D, Thalmann M, Sparla F, et al. Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic α-amylase. Journal of Biological Chemistry, 2013, 288 (47): 33620- 33633.
doi: 10.1074/jbc.M113.514794
|
|
Smith A M, Zeeman S C, Smith S M. Starch degradation. Annual Review of Plant Biology, 2005, 56 (1): 73- 98.
doi: 10.1146/annurev.arplant.56.032604.144257
|
|
Smith S M, Fulton D C, Chia T, et al. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiology, 2004, 136 (1): 2687- 2699.
doi: 10.1104/pp.104.044347
|
|
Sugimura Y, Fukayama H, Michiyama H, et al. 2023. The relationship between β-amylase and the degradation of starch temporarily stored in rice leaf blades. Bioscience, Biotechnology, and Biochemistry, 87(7): 736–741.
|
|
Yang Y M, Zhang Y F, Zhang L Y, et al. Isolation of Bacillus siamensis B-612, a strain that is resistant to rice blast disease and an investigation of the mechanisms responsible for suppressing rice blast fungus. International Journal of Molecular Sciences, 2023, 24 (10): 8513.
doi: 10.3390/ijms24108513
|
|
Zhao H S, Gao Z M, Wang L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). GigaScience, 2018, 7 (10): 115.
doi: 10.1093/gigascience/giy115
|
|
Zhu C L, Lin Z M, Yang K B, et al. A bamboo ‘PeSAPK4-PeMYB99-PeTIP4-3’ regulatory model involved in water transport. New Phytologist, 2024, 243 (1): 195- 212.
doi: 10.1111/nph.19787
|