林业科学 ›› 2025, Vol. 61 ›› Issue (8): 46-57.doi: 10.11707/j.1001-7488.LYKX20250035
王晓荣1,2,龚苗3,辜忠春1,胡兴宜1,漆良华4,谭海山3,戴薛1,刘清平3,夏少丹3,赵虎1,*(
)
收稿日期:2025-01-15
出版日期:2025-08-25
发布日期:2025-09-02
通讯作者:
赵虎
E-mail:2385852743@qq.com
基金资助:
Xiaorong Wang1,2,Miao Gong3,Zhongchun Gu1,Xingyi Hu1,Lianghua Qi4,Haishan Tan3,Xue Dai1,Qingping Liu3,Shaodan Xia3,Hu Zhao1,*(
)
Received:2025-01-15
Online:2025-08-25
Published:2025-09-02
Contact:
Hu Zhao
E-mail:2385852743@qq.com
摘要:
目的: 探究毛竹向杉木林和阔叶林扩张过程中毛竹及原有森林优势种的细根分解特征、养分动态及主要影响因素,揭示毛竹扩张对森林地下碳周转和养分循环的影响机制。方法: 在幕阜山区选择毛竹向杉木林和阔叶林扩张形成的连续生态界面(杉木林→竹杉混交林→毛竹林;阔叶林→竹阔混交林→毛竹林),采用原位与异位分解相结合的方法,探讨2种毛竹扩张序列中的杉木、喜树、毛竹细根分解干质量剩余率及C、N、P含量变化动态。结果: 喜树细根的初始C含量、C/N、C/P、N/P显著低于杉木和毛竹(P<0.05),初始N、P含量显著高于杉木和毛竹(P<0.05),杉木和毛竹二者间无显著差异(P>0.05)。在毛竹向杉木林扩张序列中,毛竹细根分解速率以及C、N、P释放速率均高于杉木细根,且毛竹细根阶段性干质量损失率与土壤温度呈显著正相关。在毛竹向阔叶林扩张序列中,喜树细根分解速率显著高于毛竹(P<0.05),且毛竹细根分解速率随扩张强度增加显著增加,呈明显主场效应。与毛竹细根相比,喜树细根具有较高的C释放速率、较低的N释放速率,P释放速率相差不大。结论: 毛竹扩张一定程度上可促进杉木和喜树细根分解,但细根养分释放特征因扩张森林类型不同而存在差异。细根初始化学性质是调控毛竹向杉木林和阔叶林扩张过程中细根分解和养分释放的主要因素,毛竹细根分解在毛竹向阔叶林扩张序列具有明显主场效应。
中图分类号:
王晓荣,龚苗,辜忠春,胡兴宜,漆良华,谭海山,戴薛,刘清平,夏少丹,赵虎. 幕阜山区毛竹向杉木林和阔叶林扩张的细根分解及养分释放特征[J]. 林业科学, 2025, 61(8): 46-57.
Xiaorong Wang,Miao Gong,Zhongchun Gu,Xingyi Hu,Lianghua Qi,Haishan Tan,Xue Dai,Qingping Liu,Shaodan Xia,Hu Zhao. Characteristics of Fine Root Decomposition and Nutrient Release during Phyllostachys edulis Expansion into Cunninghamia lanceolata Forest and Broad-Leaved Forest in Mufu Mountain Area[J]. Scientia Silvae Sinicae, 2025, 61(8): 46-57.
表1
2种毛竹扩张序列不同扩张阶段的林分特征及土壤化学性质"
| 项目 Items | 毛竹扩张序列P. edulis expansion sequences | ||||||
| 毛竹向杉木林扩张 P. edulis expansion into C. lanceolata forest | 毛竹向阔叶林扩张 P. edulis expansion into broad-leaved forest | ||||||
| 杉木林 C. lanceolata forest | 竹杉混交林 Bamboo and fir mixed forest | 毛竹林 P. edulis forest | 阔叶林 Broad-leaved forest | 竹阔混交林 Bamboo and broad-leaved mixed forest | 毛竹林P. edulis forest | ||
| 郁闭度Canopy density | 0.70 | 0.75 | 0.80 | 0.70 | 0.80 | 0.80 | |
| 平均胸径Mean DBH/cm | 11.15±0.69 | 11.40±0.52 | 11.70±0.18 | 16.92±1.35 | 12.38±0.68 | 11.23±0.27 | |
| 平均树高Mean tree height/m | 9.35±0.48 | 11.47±0.38 | 13.79±0.14 | 14.60±0.64 | 12.57±0.42 | 12.39±0.19 | |
| 林分密度Stand density/(trees·hm?2) | 2 200±152.75 | 3 100±57.74 | 4 466.66±328.29 | 1 666.67±145.30 | 2 533.33±317.98 | 4 433.33±317.98 | |
| 土壤有机碳含量Soil organic carbon content/(g·kg?1) | 18.07±1.98 | 18.44±2.50 | 18.33±2.15 | 19.23±2.39 | 19.91±2.49 | 17.81±1.57 | |
| 全氮含量Total nitrogen content/(g·kg?1) | 1.34±0.12 | 1.49±0.14 | 1.53±0.13 | 1.71±0.20 | 1.67±0.20 | 1.37±0.13 | |
| 全磷含量Total phosphorus content/(g·kg?1) | 0.33±0.01 | 0.35±0.01 | 0.35±0.01 | 0.32±0.01 | 0.31±0.01 | 0.31±0.01 | |
| pH | 4.35±0.02 | 4.34±0.03 | 4.61±0.03 | 4.98±0.08 | 4.56±0.06 | 4.45±0.02 | |
| 铵态氮含量Ammonium nitrogen content/(mg·kg?1) | 2.99±0.44 | 3.48±0.68 | 2.47±0.57 | 1.52±0.28 | 1.39±0.31 | 3.40±0.59 | |
| 硝态氮含量Nitrate nitrogen concentration/(mg·kg?1) | 12.24±0.73 | 13.97±0.63 | 16.95±1.60 | 12.75±1.00 | 15.68±1.15 | 16.94±1.35 | |
| 主要树种组成及比例 Composition and proportion of main tree species | 毛竹P. edulis∶ 杉木C. lanceolata = 1∶8.4 | 毛竹P. edulis∶杉木C. lanceolata =1∶1.2 | 毛竹P. edulis∶杉木C. lanceolata =21.2∶1 | 毛竹P. edulis∶阔叶树Broad-leaved tree=1.5∶1 | 毛竹P. edulis∶阔叶树Broad-leaved tree =7.4∶1 | 毛竹P. edulis∶阔叶树Broad-leaved tree =43.3∶1 | |
表2
喜树、杉木、毛竹细根初始化学性质①"
| 细根类型 Fine root types | 碳含量C content/ (g·kg?1) | 氮含量N content/ (g·kg?1) | 磷含量P content/ (g·kg?1) | C/N | C/P | N/P |
| 喜树C. acuminata | 397.50±4.01b | 13.85±0.44a | 1.13±0.12a | 28.81±1.15c | 368.06±50.22b | 12.81±1.73b |
| 杉木C. lanceolata | 440.50±9.74a | 11.80±0.46b | 0.66±0.02b | 37.47±1.44b | 668.37±13.29a | 17.88±0.45a |
| 毛竹P. edulis | 442.00±3.19a | 10.35±0.12b | 0.60±0.03b | 42.73±0.70a | 741.93±32.87a | 17.39±0.90a |
表3
杉木和毛竹细根在毛竹向杉木林扩张各阶段的分解方程及分解常数"
| 细根种类 Fine root type | 林分类型 Stand type | 分解方程 Decomposition equation | 相关系数 Correlation coefficient (R2) | 分解常数 Decomposition constant (k) | 50%分解时间 50% decomposition time/a | 95%分解时间 95% decomposition time/a |
| 杉木 C. lanceolata | 杉木林C. lanceolata forest | y=95.483e?0.359 t | 0.923 4 | 0.359±0.22b | 1.93 | 8.34 |
| 竹杉混交林Bamboo and fir mixed forest | y=95.434e?0.392 t | 0.903 2 | 0.392±0.038b | 1.77 | 7.64 | |
| 毛竹林P. edulis forest | y=97.523e?0.408 t | 0.862 7 | 0.408±0.075b | 1.70 | 7.34 | |
| 毛竹 P. edulis | 杉木林C. lanceolata forest | y=98.741e?0.570 t | 0.799 7 | 0.570±0.137ab | 1.22 | 5.26 |
| 竹杉混交林Bamboo and fir mixed forest | y=100e?0.674 t | 0.902 1 | 0.674±0.095ab | 1.03 | 4.45 | |
| 毛竹林P. edulis forest | y=99.672e?0.812 t | 0.952 7 | 0.812±0.049a | 0.85 | 3.69 |
表4
喜树和毛竹细根在毛竹向阔叶林扩张各阶段的分解方程及分解常数①"
| 细根种类 Fine root type | 林分类型 Stand types | 分解方程 Decomposition equation | 相关系数 Correlation coefficient (R2) | 分解常数 Decomposition constant (k) | 50%分解时间 50% decomposition time/a | 95%分解时间 95% decomposition time/a |
| 喜树 C. acuminata | 阔叶林Broad-leaved forest | y=96.73e?0.879 t | 0.901 2 | 0.879±0.146ab | 0.79 | 3.41 |
| 竹阔混交林Bamboo and broad-leaved mixed forest | y=92.242e?0.930 t | 0.942 2 | 0.930±0.053ab | 0.75 | 3.22 | |
| 毛竹林P. edulis forest | y=95.144e?1.120 t | 0.965 3 | 1.120±0.045a | 0.62 | 2.67 | |
| 毛竹 P. edulis | 阔叶林Broad-leaved forest | y=82.125e?0.387 t | 0.808 9 | 0.387±0.026c | 1.79 | 7.74 |
| 竹阔混交林Bamboo and broad-leaved mixed forest | y=97.906e?0.735 t | 0.933 5 | 0.735±0.079b | 0.94 | 4.08 | |
| 毛竹林P. edulis forest | y=100e?0.840 t | 0.927 4 | 0.840±0.114ab | 0.83 | 3.57 |
表5
毛竹不同扩张序列细根阶段性干质量损失率与土壤温度、土壤含水量的相关性分析①"
| 扩张序列 Expansion sequence | 细根种类 Fine root type | 土壤温度Soil temperature | 土壤含水量Soil water content | |||
| 相关系数 Correlation coefficient | P | 相关系数 Correlation coefficient | P | |||
| 毛竹向杉木林扩张 P. edulis expansion to C. lanceolata forest | 杉木C. lanceolata | ?0.016 | 0.919 | ?0.288 | 0.055 | |
| 毛竹P. edulis | 0.326* | 0.029 | 0.076 | 0.621 | ||
| 毛竹向阔叶林扩张 P. edulis expansion to broad-leaved forest | 喜树C. acuminata | ?0.227 | 0.134 | 0.016 | 0.919 | |
| 毛竹P. edulis | ?0.023 | 0.880 | ?0.084 | 0.582 | ||
| 蔡春菊, 范少辉, 刘希珍, 等. 毛竹向杉木林扩展过程中细根适应策略. 生态学杂志, 2019, 38 (4): 967- 972. | |
| Cai C J, Fan S H, Liu X Z, et al. Fine root adaptation strategy of moso bamboo during its expansion into Chinese fir forest. Chinese Journal of Ecology, 2019, 38 (4): 967- 972. | |
| 崔 洋, 汪思龙, 于小军, 等. 森林土壤动物对凋落物早期分解及养分释放的影响. 生态学杂志, 2012, 31 (11): 2709- 2715. | |
| Cui Y, Wang S L, Yu X J, et al. Effects of forest soil fauna on early-stage litter decomposition and nutrient release. Chinese Journal of Ecology, 2012, 31 (11): 2709- 2715. | |
| 顾 娇, 毛莹儿, 李秀秀, 等. 杉木叶片、细根功能性状对毛竹扩张及伐除的响应. 生态学报, 2023, 43 (8): 3286- 3294. | |
| Gu J, Mao Y E, Li X X, et al. Responses of leaf and fine root functional traits of Cunninghamia lanceolata to Phyllostachys edulis expansion and removal. Acta Ecologica Sinica, 2023, 43 (8): 3286- 3294. | |
| 李德会, 李相君, 吴庆贵, 等. 柏木人工林林窗位置对香椿细根分解及土壤真菌群落多样性的影响. 生态学报, 2022, 42 (7): 2784- 2797. | |
| Li D H, Li X J, Wu Q G, et al. Effects of gap locations on the decomposition of fine root of Toona sinensis and soil fungal community diversity in cypress plantation forest. Acta Ecologica Sinica, 2022, 42 (7): 2784- 2797. | |
| 李丝雨, 栾军伟. 2020. 竹林扩张符合外来物种入侵范式吗?世界竹藤通讯, 18(6): 64-68. | |
| Li S Y, Luan J W. 2020. Is bamboo forest expansion consistent with the alien species invasion paradigm? From the perspective of nutrient cycling. World Bamboo and Ratta, 18(6): 64-68. [in Chinese] | |
| 李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展. 生态学报, 2016, 36 (16): 4977- 4987. | |
| Li Y N, Zhou X M, Zhang N L, et al. The research of mixed litter effects on litter decomposition interrestrial ecosystem. Acta Ecologica Sinica, 2016, 36 (16): 4977- 4987. | |
| 林成芳, 彭建勤, 洪慧滨, 等. 氮、磷养分有效性对森林凋落物分解的影响研究进展. 生态学报, 2017, 37 (1): 54- 62. | |
| Lin C F, Peng J Q, Hong H B, et al. Effects of nitrogen and phosphorus availability on forest litter decomposition. Acta Ecologica Sinica, 2017, 37 (1): 54- 62. | |
| 刘 骏, 杨清培, 余定坤, 等. 细根对竹林-阔叶林界面两侧土壤养分异质性形成的贡献. 植物生态学报, 2013, 37 (8): 739- 749. | |
| Liu J, Yang Q P, Yu D K, et al. Contribution of fine root to soil nutrient heterogeneity at two sides of the bamboo and broad-leaved forest interface. Chinese Journal of Plant Ecology, 2013, 37 (8): 739- 749. | |
| 刘 仁, 张宇飞, 金志芳, 等. 温度调控外源氮添加对毛竹细根分解及其养分释放的影响. 生态学杂志, 2019, 38 (12): 3617- 3625. | |
| Liu R, Zhang Y F, Jin Z F, et al. Incubation temperature modulates the effects of exogenous nitrogen addition on decomposition and nutrient release of Phyllostachys edulis fine roots. Chinese Journal of Ecology, 2019, 38 (12): 3617- 3625. | |
| 刘 烁, 周国模, 白尚斌. 基于光照强度变化的毛竹扩张对杉木影响的探讨. 浙江农林大学学报, 2011, 28 (4): 550- 554. | |
| Liu S, Zhou G M, Bai S B. Light intensity changes on Cunninghamia lanceolata in mixed stands with different concentrations of Phyllostachys pubescens. Journal of Zhejiang A& F University, 2011, 28 (4): 550- 554. | |
| 任立宁, 刘世荣, 蔡春菊, 等. 川南地区毛竹和林下植被芒箕细根分解特征. 生态学报, 2018, 38 (21): 7638- 7646. | |
| Ren L N, Liu S R, Cai C J, et al. Decomposition characteristics of the fine root of Phyllostachys edulis and Dicranopteris pedata in southern Sichuan. Acta Ecologica Sinica, 2018, 38 (21): 7638- 7646. | |
| 宋庆妮, 杨清培, 刘 骏, 等. 毛竹扩张对常绿阔叶林土壤氮素矿化及有效性的影响. 应用生态学报, 2013, 24 (2): 338- 344. | |
| Song Q N, Yang P Q, Liu J, et al. Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest. Chinese Journal of Applied Ecology, 2013, 24 (2): 338- 344. | |
| 谭向平, 申卫军. 降水变化和氮沉降影响森林叶根凋落物分解研究进展. 生态学报, 2021, 41 (2): 444- 455. | |
| Tan X P, Shen W J. Advances in the effects of precipitation regime alteration and elevated atmospheric nitrogen deposition on above- and below-ground litter decomposition in forest ecosystems. Acta Ecologica Sinica, 2021, 41 (2): 444- 455. | |
| 王存国, 陈正侠, 马承恩, 等. 细根异速分解的3个可能影响途径. 北京林业大学学报, 2016, 38 (4): 123- 128. | |
| Wang C G, Chen Z X, Ma C E, et al. Three potential pathways influencing contrasting decomposition rates of fine roots. Journal of Beijing Forestry University, 2016, 38 (4): 123- 128. | |
| 王晓荣, 胡兴宜, 庞宏东, 等. 毛竹扩展对杉木林和阔叶林群落结构与多样性的影响. 森林与环境学报, 2022, 42 (5): 474- 482. | |
| Wang X R, Hu X Y, Pang H D, et al. Effects of moso bamboo expansion on community structure and diversity of artificial forests, Chinese fir stands, and broad-leaved forest. Journal of Forest and Environment, 2022, 42 (5): 474- 482. | |
| 王晓荣, 雷 蕾, 付 甜, 等. 抚育择伐对马尾松林凋落叶分解速率和养分释放的短期影响. 林业科学, 2020, 56 (4): 12- 21. | |
| Wang X R, Lei L, Fu T, et al. Short-term effects of selective cutting for tending on leaf litter decomposition rate and nutrient release in Pinus massoniana forests. Scientia Silvae Sinicae, 2020, 56 (4): 12- 21. | |
| 王 微, 胡 凯, 党成强, 等. 凋落物分解与细根生长的相互作用. 林业科学, 2016, 52 (4): 100- 109. | |
| Wang W, Hu K, Dang C Q, et al. Interaction of litter decomposition and fine-root growth. Scientia Silvae Sinicae, 2016, 52 (4): 100- 109. | |
| 王杉杉, 徐秋芳, 范 博, 等. 毛竹扩张对杉木林土壤微生物残体碳富集的影响. 生态学报, 2023, 43 (5): 1902- 1912. | |
| Wang S S, Xu Q F, Fan B, et al. Effects of moso bamboo expansion on accumulation of soil microbial residual carbon in Chinese fir forest. Acta Ecologica Sinica, 2023, 43 (5): 1902- 1912. | |
| 谢 娜, 郭其强, 袁刚毅, 等. 马尾松及其林下油茶细根分解特征. 南方农业学报, 2023, 54 (1): 190- 199. | |
| Xie N, Guo Q Q, Yuan G Y, et al. Fine root decomposition characteristics of Pinus massoniana Lamb. and Camellia oleifera Abel. under Pinus massoniana forest. Journal of Sourthern Agriculture, 2023, 54 (1): 190- 199. | |
| 徐 胜, 付 伟, 平 琴, 等. 气候变化对树木凋落物分解的影响研究进展. 生态学杂志, 2017, 36 (11): 3266- 3272. | |
| Xu S, Fu W, Ping Q, et al. Advance in studies on the effects of climate change on decomposition of tree litters. Chinese Journal of Ecology, 2017, 36 (11): 3266- 3272. | |
|
杨清培, 杨光耀, 宋庆妮, 等. 竹子扩张生态学研究: 过程、后效与机制. 植物生态学报, 2015, 39 (1): 110- 124.
doi: 10.17521/cjpe.2015.0012 |
|
|
Yang Q P, Yang G Y, Song Q N, et al. Ecological studies on bamboo expansion: process, consequence and mechanism. Chinese Journal of Plant Ecology, 2015, 39 (1): 110- 124.
doi: 10.17521/cjpe.2015.0012 |
|
|
Ayres E, Dromph K M, Bardgett R D. Do plant species encourage soil biota that specialise in the rapid decomposition of their litter?. Soil Biology and Biochemistry, 2006, 38 (1): 183- 186.
doi: 10.1016/j.soilbio.2005.04.018 |
|
|
Güsewell S, Gessner M O. N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 2009, 23 (1): 211- 219.
doi: 10.1111/j.1365-2435.2008.01478.x |
|
| He L X Z, Jia Z Q, Li Q X, et al. Fine-root decomposition characteristics of four typical shrubs in sandy areas of an arid and semiarid alpine region in western China. Ecology and Evolution, 2018, 9 (9): 5407- 5419. | |
|
Jiang L, Kou L, Li S G. Alterations of early-stage decomposition of leaves and absorptive roots by deposition of nitrogen and phosphorus have contrasting mechanisms. Soil Biology and Biochemistry, 2018, 127, 213- 222.
doi: 10.1016/j.soilbio.2018.09.037 |
|
|
Lin D, Dou P, Yang G, et al. Home-field advantage of litter decomposition differs between leaves and fine roots. New Phytologist, 2020, 227 (4): 995- 1000.
doi: 10.1111/nph.16517 |
|
|
Luan J W, Liu S R, Li S Y, et al. Functional diversity of decomposers modulates litter decomposition affected by plant invasion along a climate gradient. Journal of Ecology, 2021, 109 (3): 1236- 1249.
doi: 10.1111/1365-2745.13548 |
|
|
Manzoni S, Jackson R B, Trofymow J A, et al. The global stoichiometry of litter nitrogen mineralization. Science, 2008, 321 (5889): 684- 686.
doi: 10.1126/science.1159792 |
|
| Pan J, Liu Y Q, Niu J H, et al. moso bamboo expansion reduced soil N2O emissions while accelerated fine root litter decomposition: contrasting non‑additive effects. Plant and Soil, 2024, 501 (1): 7- 21. | |
| Tang Y L, Zhou B Z, Li Q. 2012. Fine root decomposition dynamics in moso bamboo forest of southeast China. Advanced Materials Research, 518-523: 5395-5400. | |
|
Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20 (1): 5- 15.
doi: 10.1890/08-0127.1 |
|
|
Wu Y X, Guo J H, Tang Z M, et al. moso bamboo (Phyllostachys edulis) expansion enhances soil pH and alters soil nutrients and microbial communities. Science of the Total Environment, 2024, 912, 169346.
doi: 10.1016/j.scitotenv.2023.169346 |
|
|
Zeng L X, He W, Teng M J, et al. Effects of mixed leaf litter from predominant afforestation tree species on decomposition rates in the Three Gorges Reservoir, China. Science of the Total Environment, 2018, 639, 679- 686.
doi: 10.1016/j.scitotenv.2018.05.208 |
|
| Zhao X X, Tian Q X, Michelsen A, et al. Home-field advantage of litter decomposition differs among leaves, absorptive roots, and transport roots. Plant and Soil, 2024, 500 (2): 391- 402. | |
|
Zheng J J, Li S G, Wang H M, et al. Home-field advantage meets priming effect in root decomposition: implications for belowground carbon dynamics. Functional Ecology, 2023, 37 (3): 676- 689.
doi: 10.1111/1365-2435.14251 |
| [1] | 王晓荣,雷蕾,付甜,潘磊,曾立雄,肖文发. 抚育择伐对马尾松林凋落叶分解速率和养分释放的短期影响[J]. 林业科学, 2020, 56(4): 12-21. |
| [2] | 何凌仙子, 贾志清, 刘涛, 李清雪, 张友焱, 石坤, 冯莉莉, 杨凯悦, 赵雪彬. 高寒沙地中间锦鸡儿和柠条锦鸡儿细根分解动态特征[J]. 林业科学, 2018, 54(2): 162-169. |
| [3] | 王振海, 殷秀琴, 张成蒙. 土壤动物在长白山臭冷杉凋落物分解中的作用[J]. 林业科学, 2016, 52(7): 59-67. |
| [4] | 张晓曦, 刘增文, 邴塬皓, 朱博超, 杜良贞, 祝振华. 樟子松与其他10种凋落叶混合分解的养分释放特征[J]. 林业科学, 2014, 50(7): 149-156. |
| [5] | 魏圆云, 武志超, 杨万勤, 吴福忠. 季节性冻融期亚高山/高山森林细根分解动态[J]. 林业科学, 2013, 49(8): 21-28. |
| [6] | 胡红玲;张健;刘洋;涂利华;向元彬;. 模拟氮沉降对华西雨屏区巨桉林凋落叶分解的影响[J]. 林业科学, 2011, 47(8): 25-30. |
| [7] | 李仁洪;胡庭兴;涂利华;刘闯;雒守华;向元彬;戴洪忠;谢财永. 华西雨屏区慈竹林凋落叶分解过程养分释放对模拟氮沉降的响应[J]. 林业科学, 2010, 46(8): 8-14. |
| [8] | 杨玉盛 郭剑芬 陈银秀 陈光水 郑燕明. 福建柏和杉木人工林凋落物分解及养分动态的比较[J]. 林业科学, 2004, 40(3): 19-25. |
| [9] | 谭芳林. 木麻黄防护林生态系统凋落物及养分释放研究[J]. 林业科学, 2003, 39(zk): 21-26. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||