林业科学 ›› 2025, Vol. 61 ›› Issue (7): 251-261.doi: 10.11707/j.1001-7488.LYKX20240507
• 研究论文 • 上一篇
收稿日期:
2024-08-28
出版日期:
2025-07-20
发布日期:
2025-07-25
通讯作者:
迟德富
E-mail:chidefu@126.com
基金资助:
Received:
2024-08-28
Online:
2025-07-20
Published:
2025-07-25
Contact:
Defu Chi
E-mail:chidefu@126.com
摘要:
目的: 探究赤松梢斑螟幼虫肠道细菌组成的多样性,分析其肠道细菌潜在功能,并采用传统分离培养法获取可培养细菌,为未来验证肠道细菌功能贮备菌种(株)资源,为该害虫的防治提供新思路和科学依据。方法: 利用宏基因组学技术与传统分离培养方法相结合,从宏观和微观2个角度分析取食樟子松的赤松梢斑螟幼虫肠道细菌。结果: 已明确注释的细菌共70门59纲(部分尚未注释到纲)129目266科493属
中图分类号:
陈泽光,迟德富. 赤松梢斑螟幼虫肠道细菌的多样性及可培养细菌鉴定[J]. 林业科学, 2025, 61(7): 251-261.
Zeguang Chen,Defu Chi. Diversity of Gut Bacteria in Larvae of Dioryctria sylvestrella and Identification of the Culturable Bacteria[J]. Scientia Silvae Sinicae, 2025, 61(7): 251-261.
表1
赤松梢斑螟微生物宏基因组测序数据组装统计①"
参数 Parameter | 样本 Sample | ||
Z1 | Z2 | Z3 | |
组装后重叠群的数目Post-assembly contig count | 481 090 | 468 688 | 480 911 |
重叠群碱基数之和Total contig length/bp | 659 126 506 | 644 809 206 | 658 945 828 |
最长重叠群的碱基数Length of the largest contig/bp | 39 306 | 34 959 | 38 807 |
N50/bp | 2 209 | 2 209 | 2 198 |
GC(%) | 36.76 | 36.94 | 36.66 |
Q20(%) | 97.13 | 97.59 | 97.43 |
比对率Mapped rate(%) | 99.69 | 99.67 | 99.68 |
表5
赤松梢斑螟肠道细菌的16S rDNA序列比对"
菌株 编号 Strain No. | 门 Phylum | 纲 Class | 目 Order | 科 Family | 最高相似菌株 Highest similarity strain | 相似度 Similarity (%) | 登录号 Login number |
A1 | 变形菌门 Pantoea rodasii | γ-变形菌纲 Gammaproteobacteria | 假单胞菌目 Pseudomonadales | 假单胞菌科 Pseudomonadaceae | 假单胞菌 Pseudomonas soli | 99.93 | PQ034579 |
A9 | 嗜虫假单胞菌 Pseudomonas entomophila | 100.00 | PQ039744 | ||||
A3 | 肠杆菌目 Enterobacterales | 肠杆菌科 Enterobacteriaceae | 路氏肠杆菌 Enterobacter ludwigii | 100.00 | PQ039732 | ||
A4 | 欧文菌属 Erwinia sp. | 99.86 | PQ039738 | ||||
A5 | 产酸克雷伯菌 Klebsiella oxytoca | 99.93 | PQ039733 | ||||
A6 | 非脱羧勒克氏菌 Leclercia adecarboxylata | 100.00 | PQ039736 | ||||
A8 | 耐草甘膦菌 Pantoea rodasii | 99.93 | PQ039734 | ||||
A12 | 产气克雷伯菌 Klebsiella_aerogenes | 99.71 | PQ108148 | ||||
A13 | Erwinia_billingiae | 99.66 | PQ039746 | ||||
A15 | 阴沟肠杆菌 Enterobacter cloacae | 99.72 | PQ039739 | ||||
A11 | 黄单胞菌目 Xanthomonadales | 黄单胞菌科 Xanthomonadaceae | 嗜麦芽窄食单胞菌 Stenotrophomonas maltophilia | 99.86 | PQ039740 | ||
A10 | β-变形菌纲 Betaproteobacteria | 伯克氏菌目 Burkholderiales | 伯克氏菌科 Burkholderiaceae | 青枯雷尔氏菌 Ralstonia insidiosa | 100.00 | PQ039722 | |
A14 | 伯克霍尔德科Burkholderiaceae | 洋葱伯克氏菌 Burkholderia stagnalis | 99.53 | PQ039743 | |||
A2 | 厚壁菌门 Firmicutes | 芽胞杆菌纲 Bacilli | 芽胞杆菌目 Bacillale | 芽胞杆菌科 Bacillaceae | 蜡样芽孢杆菌 Bacillus cereus | 99.93 | PQ039742 |
A7 | 放线菌门 Actinobacteria | 放线菌纲 Actinobacteria | 微球菌目 Micrococcales | 微杆菌科 Microbacteriaceae | 微杆菌 Microbacterium sp. | 99.78 | PQ039747 |
表6
赤松梢斑螟幼虫肠道可培养细菌在属水平上的组成情况"
赤松梢斑螟肠道细菌在属水平上的分类 Classification of the gut bacteria of D. sylvestrella at the genus level | 分离率 Separation rate(%) |
假单胞菌属 Pseudomonas | 31.09 |
肠杆菌属 Enterobacter | 36.13 |
欧文氏菌属 Erwinia | 2.52 |
克雷伯克氏菌属 Klebsiella | 4.20 |
勒克氏菌属 Leclercia | 1.68 |
泛菌属 Pantoea | 0.84 |
寡养单胞菌属 Stenotrophomonas | 12.61 |
芽孢杆菌属 Bacillus | 5.88 |
微杆菌属 Microbacterium | 1.68 |
罗尔斯通氏菌属 Ralstonia | 0.84 |
伯克霍尔德氏菌属 Burkholderia | 2.52 |
陈勃生, 鲁兴萌, 邵勇奇. 鳞翅目昆虫肠道微生物的多样性及其与宿主的相互作用. 昆虫学报, 2017, 60 (6): 710- 722. | |
Chen B S, Lu X M, Shao Y Q. Diversity of the gut microbiota in lepidopteran insects and their interaction with hosts. Acta Entomologica Sinica, 2017, 60 (6): 710- 722. | |
陈宏健, 周 杨, 夏小洪, 等. 松墨天牛成虫室内外种群肠道细菌的多样性及功能分析. 微生物学报, 2021, 61 (3): 683- 694. | |
Chen H J, Zhou Y, Xia X H, et al. Diversity and function of gut bacteria in adult Monochamus alternatus Hope (Coleoptera: Cerambycidae) fed indoors and outdoors. Acta Microbiologica Sinica, 2021, 61 (3): 683- 694. | |
东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册. 北京: 科学出版社. | |
Dong X Z, Cai M Y. 2001.Manual for systematic identification of common bacteria.Beijing: Science Press.[in Chinese] | |
郭彤彤, 朱铭强, 李晋鹏, 等. 杜仲梦尼夜蛾幼虫肠道可培养细菌的组成及其功能. 林业科学, 2020, 56 (11): 124- 133.
doi: 10.11707/j.1001-7488.20201113 |
|
Guo T T, Zhu M Q, Li J P, et al. Composition and functions of cultural bacteria in the larval guts of Orthosia songi (Lepidoptera: Noctuidae). Scientia Silvae Sinicae, 2020, 56 (11): 124- 133.
doi: 10.11707/j.1001-7488.20201113 |
|
贾斐然, 周忠福, 赵文霞, 等. 2022. 苹小吉丁自然种群肠道微生物多样性. 林业科学, 58(3): 86–96. | |
Jia F R, Zhou Z F, Zhao W X, et al. 2022. Diversity of gut microorganisms in natural population of Agrilus mali (Coleoptera: Buprestidae), Scientia Silvae Sinicae, 58(3): 86–96. [in Chinese] | |
贾若峰, 谷 奇, 孙一鸣, 等. 取食洋白蜡和旱柳光肩星天牛幼虫肠道中的细菌多样性差异及关键纤维素降解细菌筛选. 林业科学, 2023, 59 (4): 117- 131.
doi: 10.11707/j.1001-7488.LYKX20210919 |
|
Jia R F, Gu Q, Sun Y M, et al. Differences in bacterial diversity and key cellulose-degrading bacteria in the intestinal tract of Anoplophora glabripennis (Coleoptera: Cerambycidae)larvae feeding on Fraxinus pennsylvanica and Salix matsudana. Scientia Silvae Sinicae, 2023, 59 (4): 117- 131.
doi: 10.11707/j.1001-7488.LYKX20210919 |
|
李传明. 2021. 食物营养和肠道细菌对稻纵卷叶螟生长发育的影响. 扬州: 扬州大学. | |
Li C M. 2021. Effects of food nutrition and gut flora on the growth and development of Chaphalocrocis medina. Yangzhou: Yangzhou University. [in Chinese] | |
刘 行, 聂振业, 迟德富, 等. 球孢白僵菌和中华甲虫蒲螨对冷杉梢斑螟杀虫作用及其相关酶活性影响. 东北林业大学学报, 2023, 51 (5): 139- 146.
doi: 10.3969/j.issn.1000-5382.2023.05.023 |
|
Liu X, Nie Z Y, Chi D F, et al. Toxicity and killing effect of Beauveria bassiana and Pyemotes zhonghuajia on Dioryctria abietella and related enzyme activities. Journal of Northeast Forestry University, 2023, 51 (5): 139- 146.
doi: 10.3969/j.issn.1000-5382.2023.05.023 |
|
刘漪舟. 2019. 入侵早期红脂大小蠹发生与群落物种多样性关系的初步研究. 北京: 北京林业大学. | |
Liu Y Z. 2019. Preliminary study on the relationship between the occurrence of Dendroctonus valens and community species diversity in the early stage of invasion. Beijing: Beijing Forestry University[in Chinese] | |
牛营超, 崔立星, 丁 露, 等. 2022. 柑橘潜叶甲幼虫中肠细菌的多样性及功能分析. 江苏农业科学, 50(23): 110−115. | |
Niu Y C, Cui L X, Ding L, et al. 2022. Study on diversity and function of midgut bacteria in larvae of Podagricomela nigricollis (Coleoptera:Chrysomelida). Jiangsu Agricultural Sciences, 50(23): 110−115.[in Chinese] | |
石庆会, 陈华莲, 郑雅婷, 等. 散纹盛蛱蝶(鳞翅目: 蛱蝶科)成虫肠道细菌群落结构与多样性分析. 三明学院学报, 2023, 40 (3): 17- 25. | |
Shi Q H, Chen H L, Zheng Y T, et al. An analysis of the bacterial community structure and diversity in the gut of Symbrenthia lilaea (Lepidoptera: Nymphalidae) adult. Journal of Sanming University, 2023, 40 (3): 17- 25. | |
施婉君, 程家安, 祝增荣, 等. 昆虫共生细菌 Wolbachia 的研究进展. 生态学报, 2002, 22 (3): 409- 419.
doi: 10.3321/j.issn:1000-0933.2002.03.018 |
|
Shi W J, Chen J A, Zhu Z R, et al. Progress in the studies of insect symbiont Wolbachia. Acta Ecologica Sinica, 2002, 22 (3): 409- 419.
doi: 10.3321/j.issn:1000-0933.2002.03.018 |
|
宋效惠, 闫敦梁, 迟德富. 樟子松梢斑螟发生规律及防治技术. 东北林业大学学报, 2021, 49 (3): 132- 138.
doi: 10.3969/j.issn.1000-5382.2021.03.022 |
|
Song X H, Yan D L, Chi D F. Occurrence regularity and control technology of Dioryctria mongolica Wang et Sung. Journal of Northeast Forestry University, 2021, 49 (3): 132- 138.
doi: 10.3969/j.issn.1000-5382.2021.03.022 |
|
王美惠, 陈焕文, 解 丹, 等. 长林小蠹肠道可培养细菌群落的组成和结构. 东北林业大学学报, 2024, 52 (2): 109- 114, 119.
doi: 10.3969/j.issn.1000-5382.2024.02.017 |
|
Wang M H, Chen H W, Xie D, et al. Composition and structure of culturable bacterial community in the intestinal of Hylurgus ligniperda Fabricius. Journal of Northeast Forestry University, 2024, 52 (2): 109- 114, 119.
doi: 10.3969/j.issn.1000-5382.2024.02.017 |
|
王闪闪, 周方园, 王 波, 等. 细菌挥发物减缓伴生真菌对红脂大小蠹幼虫的不利作用. 中国科学: 生命科学, 2017, 47 (9): 977- 987.
doi: 10.1360/N052017-00164 |
|
Wang S S, Zhou F Y, Wang B, et al. Bacterial volatiles slow down the adverse effects of associated fungi on the larvae of Dendroctonus valens. LeConte: Scientia Sinica Vitae, 2017, 47 (9): 977- 987.
doi: 10.1360/N052017-00164 |
|
王天召, 王正亮, 朱杭锋, 等. 基于高通量测序的褐飞虱肠道微生物多样性分析. 昆虫学报, 2019, 62 (3): 323- 333. | |
Wang T Z, Wang Z L, Zhu H F, et al. Analysis of the gut microbial diversity of the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) by high-throughput sequencing. Acta Entomologica Sinica, 2019, 62 (3): 323- 333. | |
魏丹峰, 王秀吉, 杨 锦, 等. 取食不同食料的美国白蛾幼虫肠道细菌多样性及差异性研究. 环境昆虫学报, 2017, 39 (3): 515- 524. | |
Wei D F, Wang X J, Yang J, et al. Analysis of the diversity and difference of gut bacteria in larvae Hyphantria cunea Drury (Lepidoptera: Arctiidae) on different diets. Journal of Environmental Entomology, 2017, 39 (3): 515- 524. | |
徐 波, 严善春, 聂唯良, 等. 2种红松种实害虫的生物学特性及危害特征的补充研究. 林业科学, 2010, 46 (7): 188- 192.
doi: 10.11707/j.1001-7488.20100728 |
|
Xu B, Yan S C, Nie W L, et al. A complementary study on biological characteristics of two species of Dioryctria (Lepidoptera: Pyralidae)and their damage to cones and twigs of Korean pine. Scientia Silvae Sinicae, 2010, 46 (7): 188- 192.
doi: 10.11707/j.1001-7488.20100728 |
|
杨亚贤, 周昭旭, 钱秀娟, 等. 取食四种寄主植物对番茄潜叶蛾中肠肠道细菌的影响. 中国生物防治学报, 2024, 40 (4): 776- 786. | |
Yang Y X, Zhou Z X, Qian X J, et al. Effects of feeding four host plants on midgut bacteria of Tuta absoluta.. Chinese Journal of Biological Control, 2024, 40 (4): 776- 786. | |
张冰晨, 杨卫诚, 肖佳兴, 等. 不同寄主植物对桫椤叶蜂的生长发育及其肠道细菌群落的影响. 环境昆虫学报, 2024, 46 (4): 886- 896.
doi: 10.3969/j.issn.1674-0858.2024.04.12 |
|
Zhang B C, Yang W C, Xiao J X, et al. Effects of different host plants on the growth, development and gut bacterial community of Rhoptroceros cyatheae larvae. Journal of Environmental Entomology, 2024, 46 (4): 886- 896.
doi: 10.3969/j.issn.1674-0858.2024.04.12 |
|
张庆贺, 马建海, 赵丰钰, 等. 2012. 青海云杉(拟)齿小蠹聚集信息素研究进展. 林业科学, 48(6): 118–126. | |
Zhang Q H, Ma J H, Zhao F Y, et al. 2012. Research progress on aggregation pheromone systems of major Ips/Pseudips bark beetles attacking the thickleaf spruce: a mini-review, Scientia Silvae Sinicae, 48 (6): 118–126. [in Chinese] | |
张治军, 陈奇章, 李雪生, 等. 昆虫内共生菌沃尔巴克氏体抗病毒研究进展. 环境昆虫学报, 2021, 43 (3): 576- 583.
doi: 10.3969/j.issn.1674-0858.2021.03.6 |
|
Zhang Z J, Chen Q Z, Li X S. et al. Advance in research on antiviral effect of Wolbachia, an endosymbiotic bacteria. Journal of Environmental Entomology, 2021, 43 (3): 576- 583.
doi: 10.3969/j.issn.1674-0858.2021.03.6 |
|
周 宇, 潘 虹, 杜 君, 等. 大兴安岭优势树种倒木分解的细菌群落组成及多样性差异. 中南林业科技大学学报, 2023, 43 (9): 105- 115. | |
Zhou Y, Pan H, Du J, et al. Differences in the bacterial community composition and diversity in the decomposition of fallen logs of dominant tree species in the Daxing’anling Mountains. Journal of Central South University of Forestry & Technology, 2023, 43 (9): 105- 115. | |
Broderick N A, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes, 2012, 3 (4): 307- 321.
doi: 10.4161/gmic.19896 |
|
Brune A. 2018. Methanogens in the digestive tract of termites. (Endo)symbiotic Methanogenic Archaea. Cham: Springer International Publishing. | |
Crotti E, Rizzi A, Chouaia B, et al. Acetic acid bacteria, newly emerging symbionts of insects. Applied and Environmental Microbiology, 2010, 76 (21): 6963- 6970.
doi: 10.1128/AEM.01336-10 |
|
Devi S, Saini H S, Kaur S. Insecticidal and growth inhibitory activity of gut microbes isolated from adults of Spodoptera litura (Fab. ). BMC Microbiology, 2022, 22 (1): 71.
doi: 10.1186/s12866-022-02476-3 |
|
Dillon R J, Dillon V M. The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology, 2004, 49 (1): 71- 92.
doi: 10.1146/annurev.ento.49.061802.123416 |
|
Douglas A E. The microbial dimension in insect nutritional ecology. Functional Ecology, 2009, 23 (1): 38- 47.
doi: 10.1111/j.1365-2435.2008.01442.x |
|
Engel P, Moran N A. The gut microbiota of insects–diversity in structure and function. FEMS Microbiology Reviews, 2013, 37 (5): 699- 735.
doi: 10.1111/1574-6976.12025 |
|
Gibson C M, Hunter M S. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecology Letters, 2010, 13 (2): 223- 234.
doi: 10.1111/j.1461-0248.2009.01416.x |
|
Hernández-García J A, Briones-Roblero C I, Rivera-Orduña F N, et al. Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): diversity, core members and co-evolutionary patterns. Scientific Reports, 2017, 7, 13864.
doi: 10.1038/s41598-017-14031-6 |
|
MsangoSoko K, Gandotra S, Chandel R K, et al. Composition and diversity of gut bacteria associated with the eri silk moth, Samia ricini, (Lepidoptera: Saturniidae) as revealed by culture-dependent and metagenomics analysis. Journal of Microbiology and Biotechnology, 2020, 30 (9): 1367.
doi: 10.4014/jmb.2002.02055 |
|
Muhammad A, Fang Y, Hou Y M, et al. The gut entomotype of red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and their effect on host nutrition metabolism. Frontiers in Microbiology, 2017, 8, 2291.
doi: 10.3389/fmicb.2017.02291 |
|
Schloss P D, Delalibera I Jr, Handelsman J, et al. Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environmental Entomology, 2006, 35 (3): 625- 629.
doi: 10.1603/0046-225X-35.3.625 |
|
Shao Y Q, Chen B S, Sun C, et al. Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chemical Biology, 2017, 24 (1): 66- 75.
doi: 10.1016/j.chembiol.2016.11.015 |
|
Shin S C, Kim S H, You H, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science, 2011, 334 (6056): 670- 674.
doi: 10.1126/science.1212782 |
|
Wong C N A, Ng P, Douglas A E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environmental Microbiology, 2011, 13 (7): 1889- 1900.
doi: 10.1111/j.1462-2920.2011.02511.x |
|
Xia X F, Gurr G M, Vasseur L, et al. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Frontiers in Microbiology, 2017, 8, 663.
doi: 10.3389/fmicb.2017.00663 |
|
Yun J H, Roh S W, Whon T W, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 2014, 80 (17): 5254- 5264.
doi: 10.1128/AEM.01226-14 |
|
Zhang S K, Shu J P, Xue H J, et al. The gut microbiota in Camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems, 2020, 5 (2): e00692- 19. |
[1] | 王参,Masoudi Abolfazl,王敏,张泽,曹靖锟,徐雨豪,于志军,刘敬泽. 雄安新区典型土地利用转变方式下土壤病原细菌特征及其对微塑料的响应[J]. 林业科学, 2025, 61(7): 231-240. |
[2] | 李威, 于珍珍, 何徽, 赵佳璐, 刘西军. 碳输入改变对湿地松人工成熟林土壤微生物群落的影响[J]. 林业科学, 2025, 61(6): 232-242. |
[3] | 吴晓煜,赵秀海. 长白山阔叶红松林物种多样性格局及其尺度效应[J]. 林业科学, 2025, 61(2): 40-49. |
[4] | 李峰卿,刘素贞,罗桂生,邹玉玲,黄维,曾满生. 不同生境沙氏鹿茸草根际土壤细菌群落结构和多样性分析[J]. 林业科学, 2025, 61(1): 47-56. |
[5] | 刘鲁霞,胡波,桑国庆,刘玉玉. 激光雷达森林结构指标在森林植物多样性评估中的研究进展[J]. 林业科学, 2025, 61(1): 176-196. |
[6] | 黄栋才,郭鑫,王得祥,王韵淑,张欣,霍雪莹. 不同经营方法对秦岭华北落叶松林分生长和林下植被的影响[J]. 林业科学, 2024, 60(8): 57-66. |
[7] | 叶子豪,罗国安,王增,姚任图,陆尤尤,吴家森,许在恩. 毛竹林下栽培食用菌对土壤性质及细菌群落特征的影响[J]. 林业科学, 2024, 60(8): 143-151. |
[8] | 杨润露,王娟,张春雨. 东北天然次生针阔混交林乔木层碳储量变化的采伐干扰响应[J]. 林业科学, 2024, 60(7): 17-27. |
[9] | 薛亚东,孙戈,李佳,德力格尔其木格·达瓦苏仁,阿木古郎·洛布桑金巴,李广良,秦爱丽,金崑,肖文发. 蒙古国大戈壁保护区A区戈壁棕熊及同域分布动物多样性和分布格局[J]. 林业科学, 2024, 60(7): 95-104. |
[10] | 祝琳,聂立水,史策,黄梦遥,牛鑫,张润哲,张兆德,魏一凡,王登芝,杨昊,聂浩亮,王江,薄慧娟. 北京松山林地nirK型反硝化微生物群落立地及林型效应[J]. 林业科学, 2024, 60(5): 139-150. |
[11] | 肖欢,叶尔江·拜克吐尔汗,张春雨,赵秀海. 长白山阔叶红松林林层群落结构与生产力的关系[J]. 林业科学, 2024, 60(3): 57-64. |
[12] | 王文正,宋立国,王钱,刘相荣,孙启武,厚凌宇. 江西九龙山铁尾矿区3种树木对土壤重金属质量分数及微生物群落组成的影响[J]. 林业科学, 2024, 60(3): 78-86. |
[13] | 尹志诚,顾佳颖,李南羿,张昕. 猕猴桃溃疡病生防菌群的构建及其生防效应[J]. 林业科学, 2024, 60(12): 101-110. |
[14] | 刘相荣,孙启武,厚凌宇,庞忠义,张琰琳,丁昌俊. 松辽平原杨树人工林土壤微生物群落结构及其功能多样性的林龄差异[J]. 林业科学, 2024, 60(11): 25-36. |
[15] | 张俊红,王洋,周生财,吴小林,吴仁超,杨琪,张毓婷,童再康. 闽楠群体遗传结构分析与核心种质库构建[J]. 林业科学, 2024, 60(1): 68-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||