林业科学 ›› 2025, Vol. 61 ›› Issue (1): 47-56.doi: 10.11707/j.1001-7488.LYKX20240002
收稿日期:
2024-01-02
出版日期:
2025-01-25
发布日期:
2025-02-09
通讯作者:
曾满生
E-mail:lfqnjfu@163.com;zmsheng222@163.com
基金资助:
Fengqing Li(),Suzhen Liu,Guisheng Luo,Yuling Zou,Wei Huang,Mansheng Zeng*(
)
Received:
2024-01-02
Online:
2025-01-25
Published:
2025-02-09
Contact:
Mansheng Zeng
E-mail:lfqnjfu@163.com;zmsheng222@163.com
摘要:
目的: 分析江西省内野生和人工栽培沙氏鹿茸草根际土壤细菌群落结构和多样性及其与土壤理化性质的关系,为构建沙氏鹿茸草健康的根际微环境,进一步探究沙氏鹿茸草仿野生栽培模式提供理论依据。方法: 应用高通量测序技术,比较油茶、栀子、马尾松林下野生以及人工栽培2种生境下沙氏鹿茸草根际土壤细菌群落结构和多样性,结合根际土壤理化性质进行相关性分析。结果: 2种生境下,沙氏鹿茸草根际土壤理化性质差异显著,人工仿野生栽培的根际微生物Alpha多样性最高,但在各林分类型间差异未达显著水平;各生境下优势菌门均为变形菌门、酸杆菌门、绿弯菌门、放线菌门,共有优势属包括卡氏伯克霍尔德菌属、慢生根瘤菌属、Candidatus_Solibacter、Occallatibacter、苔藓杆菌属和uncultured bacterium等有益菌;野生生境和人工栽培土壤细菌群落结构存在明显差异,人工栽培生境下变形菌门丰度最高;野生生境特有优势菌属(嗜酸栖热菌属 、FCPS473、丛毛单胞菌属、酸杆菌属、未培养酸杆菌属、uncultured_forest_soil_bacterium等)的丰度在人工栽培生境下显著降低,而人工栽培生境特有优势细菌属(鞘脂单胞菌属、粒状胞菌属、嗜盐囊菌属、 Mucilaginibacter)的丰度较野生生境增加明显。冗余分析表明,根际细菌群落与土壤全氮、速效钾、碱解氮、有机质含量密切相关。结论: 在野生和人工栽培生境间,沙氏鹿茸草根际土壤理化性质、细菌群落结构具有显著差异,但野生生境沙氏鹿茸草根际细菌群落之间的相似性较高。土壤全氮、速效钾、碱解氮和有机质含量是影响细菌群落结构的主要环境因子。
中图分类号:
李峰卿,刘素贞,罗桂生,邹玉玲,黄维,曾满生. 不同生境沙氏鹿茸草根际土壤细菌群落结构和多样性分析[J]. 林业科学, 2025, 61(1): 47-56.
Fengqing Li,Suzhen Liu,Guisheng Luo,Yuling Zou,Wei Huang,Mansheng Zeng. Analysis of Bacterial Community Structure and Diversity in Rhizosphere Soil of Monochasma savatieri in Different Habitats[J]. Scientia Silvae Sinicae, 2025, 61(1): 47-56.
表1
试验土壤样品来源信息"
生境 Habitat | 林分类型 Stand type | 采集地 Site | 样本名称Name | 样本 Sample | 经纬度 Longitude and latitude | 经营类型 Management type |
野生 Wild | 油茶 C. oleifera | 江西信丰 Xinfeng,Jiangxi | XF | 根际土 Rhizosphere soil | 114.96°E, 25.09°N | 粗放经营,即连续5年未 进行经营管理 Extensive management, that is, no operation for 5 consecutive years |
马尾松 P. massoniana | 江西安福 Anfu,Jiangxi | AF | 根际土 Rhizosphere soil | 114.18°E, 27.82°N | 轻度经营,即每年施肥、 抚育各1次Light management, that is, fertilization and tending once a year | |
栀子 G. jasminoides | 江西分宜 Fenyi,Jiangxi | FY | 根际土 Rhizosphere soil | 114.76°E, 27.86°N | 强度经营,即每年修枝、 施肥2~3次Intensity management, that is, pruning and fertilizing 2–3 times a year | |
人工仿野生 栽培 Artificial bionic cultivation | 针阔混交 Coniferous-broad leaved mixed stand | 江西宜春 Yichun,Jiangxi | YC | 根际土 Rhizosphere soil | 114.44°E, 27.84°N | 重度经营,全垦,全年除草、 施肥4~5次Heavy management, full reclamation, weeding and fertilization 4–5 times a year |
表2
不同生境下沙氏鹿茸草根际土壤理化性质①"
生境 Habitat | 林分类型 Stand type | pH | 全量养分含量 Content of total nutrient/(g·kg?1) | 速效养分含量 Content of available nutrient/(mg·kg?1) | ||||||
有机质 Organic matter | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium | 碱解氮 Alkali-hydrolyzable nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | ||||
野生 Wild | 油茶 C. oleifera | 5.24±0.15a | 28.41±1.39b | 1.04±0.08c | 0.38±0.04a | 21.02±1.10a | 151.13±4.56a | 2.58±0.27a | 62.66±3.37a | |
马尾松 P. massoniana | 4.68±0.08b | 41.36±7.43a | 1.64±0.13ab | 0.27±0.01b | 12.46±0.49d | 106.18±20.37b | 0.46±0.10c | 73.36±5.35a | ||
栀子 G. jasminoides | 4.51±0.36b | 47.64±6.72a | 1.53±0.19b | 0.32±0.07b | 13.73±1.04c | 126.71±24.18ab | 1.79±0.73b | 54.88±8.93a | ||
人工仿生栽培 Artificial bionic cultivation | 针阔混交 Coniferous-broad leaved mixed stand | 4.48±0.06b | 39.82±7.09a | 2.10±0.17a | 0.25±0.02b | 17.32±0.70b | 103.33±11.44b | 0.74±0.06c | 67.83±8.97a |
表3
不同生境下沙氏鹿茸草根际土壤细菌Alpha多样性指标"
生境 Habitat | 林分类型 Stand type | 丰富度指数 Richness index (Chao 1) | 香农-维纳指数 Shannon-Wiener’s index | 物种数 Observed species |
野生 Wild | 马尾松P. massoniana | 8.53±0.27a | ||
栀子G. jasminoides | 8.81±0.25a | |||
油茶C. oleifera | 8.22±0.51a | |||
人工仿生栽培 Artificial bionic cultivation | 针阔混交 Coniferous-broad leaved mixed stand | 8.86±0.84a |
表5
不同生境细菌群落在属水平上的相对丰度"
属 Genus | 相对丰度 Relative abundance(%) | |||
AF | FY | XF | YC | |
伯克霍尔德氏菌-卡巴拉氏菌- 拟伯克霍尔德氏菌属 Burkholderia-Caballeronia-Paraburkholderia | 1.73 | 2.22 | 1.07 | 7.43 |
慢生根瘤菌属 Bradyrhizobium | 2.32 | 3.49 | 1.78 | 2.91 |
红游动菌属 Rhodoplanes | 1.72 | 1.69 | 1.08 | 1.01 |
鞘脂单胞菌属Sphingomonas | 0.62 | 0.67 | 0.32 | 1.69 |
念珠菌固体杆菌属Candidatus_Solibacter | 2.70 | 2.50 | 1.57 | 2.88 |
uncultured bacterium | 6.20 | 5.60 | 4.08 | 2.08 |
苔藓杆菌属 Bryobacter | 1.69 | 2.06 | 2.09 | 1.25 |
Occallatibacter | 1.01 | 1.12 | 2.23 | 1.93 |
酸杆菌属 Acidibacter | 1.23 | 2.20 | 1.47 | 0.62 |
粒状胞菌属 Granulicella | 0.62 | 0.61 | 0.46 | 1.65 |
Mucilaginibacter | 0.12 | 0.12 | 0.09 | 1.39 |
嗜酸栖热菌属 Acidothermus | 7.84 | 9.50 | 10.18 | 0.24 |
丛毛单胞菌属 Conexibacter | 1.82 | 1.98 | 2.55 | 0.37 |
FCPS473 | 5.23 | 1.23 | 8.05 | 0.04 |
Feb-21 | 3.36 | 0.23 | 2.54 | 0.01 |
uncultured_forest_soil_bacterium | 1.85 | 1.85 | 2.97 | 0.65 |
未培养酸杆菌门菌属 uncultured_Acidobacteria_bacterium | 1.81 | 1.20 | 1.02 | 0.72 |
HSB OF53-F07 | 1.09 | 0.45 | 4.81 | 0.05 |
嗜盐囊菌属 Haliangium | 0.41 | 0.53 | 0.18 | 1.36 |
表6
土壤理化特性与沙氏鹿茸草根际土壤细菌冗余分析(RDA)"
RDA 分析解释参数 Interpretation parameter of RDA | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴 Axis 3 | 第4轴 Axis 4 |
特征值 Eigen values | ||||
物种-环境关系累积 百分比方差 Cumulative percentage variance of species-environment relation | 76.18 | 88.59 | 94.6 | 98.03 |
典范特征值总和 Sum of all canonical eigen values | 0.051 | |||
蒙特卡洛检验 Monte Carlo permutation test | ||||
第1典范轴 P 值 Significance of first canonical axis | P<0.01 | |||
所有典范轴 P 值 Significance of all canonical axis | P<0.01 |
图4
土壤理化性质与沙氏鹿茸草根际土壤细菌关系冗余分析(RDA)的二维排序 MS:Mucilaginibacter Sphingomonas;Rh:根微菌属 Rhizomicrobium;BP 伯克霍尔德氏菌-拟伯克霍尔德氏菌属 Burkholderia-Paraburkholderi;Ro:玫瑰弯菌属 Roseiarcus;CS:念珠菌固体杆菌属Candidatus_Solibacter;Gr:粒状胞菌属Granulicella;Ha:嗜盐囊菌属Haliangium;Atm:过滤酸杆菌属Acidobacterium;Si:Singulisphaera;Ge:芽单胞菌属Gemmatimonas;So:堆囊菌属Sorangium;Br:苔藓杆菌属Bryobacter;CK:柯里氏念珠菌属Candidatus_Koribacter;CX:柯里氏念珠菌属Candidatus_Koribacter;CX:Candidatus_Xiphinematobacter;Rd:红游动菌属Rhodoplanes ;My:分枝杆菌属Mycobacterium;Ab:酸性杆菌属Acidibacter;At:嗜酸栖热菌属Acidothermus;Sp:鞘脂单胞菌属Sphingomonas;TP:全磷 Total phosphorus;TN:全氮 Toal nitrogen;TK:全钾 Toal potassium;AHN:碱解氮 Alkali-hydrolyzable nitrogen;AP:速效磷 Available phosphorus;AK:速效钾 Available potassium;SOM:土壤有机质 Soil organic matter."
陈 冉, 刘志强, 王丹丹. 基于高通量测序比较不同产地药用银杏根际土壤微生物多样性. 药用生物技术, 2021, 28 (2): 117- 122. | |
Chen R, Liu Z Q, Wang D D. Microbial diversity of rhizosphere soil of Ginkgo biloba from different habitats was compared based on high-throughput sequencing. Pharmaceutical Biotechnology, 2021, 28 (2): 117- 122. | |
丁新景, 敬如岩, 黄雅丽, 等. 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 2017, 54 (5): 1293- 1298. | |
Ding X J, Jing R Y, Huang Y L, et al. Bacterial structure and diversity of rhizosphere and bulk soil of Robinia pseudoacia forests in Yellow River Delta. Acta Pedologica Sinica, 2017, 54 (5): 1293- 1298. | |
丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的 4 种不同树种人工林根际土壤细菌结构及多样性. 林业科学, 2018, 54 (1): 81- 89. | |
Ding X J, Jing R Y, Huang Y L, et al. Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing. Scientia Silvae Sinicae, 2018, 54 (1): 81- 89. | |
郭兰萍, 周良云, 康传志, 等. 药用植物适应环境胁迫的策略及道地药材“拟境栽培”. 中国中药杂志, 2020, 45 (9): 1969- 1974. | |
Guo L P, Zhou L Y, Kang C Z, et al. Strategies for medicinal plants adapting environmental stress and “simulative habitat cultivation” of Dao-di herbs. China Journal of Chinese Materia Medica, 2020, 45 (9): 1969- 1974. | |
郭子武, 杨丽婷, 林 华, 等. 坡位对毛竹林下黄花远志生物量积累与分配及其异速生长关系的影响. 南京林业大学学报(自然科学版), 2020, 44 (6): 79- 84. | |
Guo Z W, Yang L T, Lin H, et al. Effects of slope positions on growth and biomass accumulation, allocation and allometry of Polygala fallax in Phyllostachys edulis forest. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44 (6): 79- 84. | |
胡蒙爱, 马嘉伟, 张雪艳. 生物炭引入蚯蚓粪和草炭对基质环境, 黄瓜植株生长和果实品质特性的影响. 江西农业大学学报, 2022, 44 (4): 852- 861. | |
Hu M A, Ma J W, Zhang X Y. Effects of introducing biochar into vermicompost and peat on substrate environment, cucumber growth and quality characteristics. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44 (4): 852- 861. | |
李 毳, 刘 怡, 刘晋仙. 药用植物根际细菌群落多样性驱动因素分析. 生态环境学报, 2020, 29 (10): 1988- 1993. | |
Li C, Liu Y, Liu J X. Analysis of driving factors of rhizosphere bacterial community diversity in three genuine medicine plants. Ecology and Environmental Sciences, 2020, 29 (10): 1988- 1993. | |
李 岩, 何学敏, 杨晓东, 等. 不同生境黑果枸杞根际与非根际土壤微生物群落多样性. 生态学报, 2018, 38 (17): 5983- 5995. | |
Li Y, He X M, Yang X D, et al. The microbial community diversity of the rhizosphere and bulk soils of Lycium ruthenicum in different habitats. Acta Ecologica Sinica, 2018, 38 (17): 5983- 5995. | |
蔺玉红, 马嘉伟, 张雪艳. 蚯蚓粪, 草炭与生物炭混合对基质理化性质和细菌群落组成、代谢的影响. 中国农业大学学报, 2022, 27 (7): 84- 94. | |
Lin Y H, Ma J W, Zhang X Y. Effects of peat or vermicompost mixed with biochar on the physical and chemical properties of the substrate and composition and metabolism of bacterial communities. Journal of China Agricultural University, 2022, 27 (7): 84- 94. | |
罗夫来, 郭巧生, 王长林, 等. 寄主对半寄生植物百蕊草影响的综合评价研究. 中国中药杂志, 2012, 37 (9): 1174- 1179. | |
Luo F L, Guo Q S, Wang C L, et al. Complex evaluation for influence of hosts on hemipatasite Thesium chinense. China Journal of Chinese Materia Medica, 2012, 37 (9): 1174- 1179. | |
裴怀弟, 宿兵兵, 李 琦, 等. 人参果生育期根际土壤细菌结构对施氮量的响应. 植物营养与肥料学报, 2023, 29 (6): 1125- 1134. | |
Pei H D, Su B B, Li Q, et al. Response of rhizosphere bacterial community structure to nitrogen application rate during ginseng fruit (Solanum muricatum Aiton) growth stages. Journal of Plant Nutrition and Fertilizers, 2023, 29 (6): 1125- 1134. | |
孙 倩, 吴宏亮, 陈 阜, 等. 基于高通量测序的几种不同作物根际土壤细菌群落结构和多样性分析. 农业生物技术学报, 2020, 28 (8): 1490- 1498. | |
Sun Q, Wu H L, Chen F, et al. Analysis of bacterial community structure and diversity in rhizosphere soil of several different crops based on high-throughput sequencing. Journal of Agricultural Biotechnology, 2020, 28 (8): 1490- 1498. | |
施咏滔, 朱再标, 郭巧生, 等. 人为干扰对野生沙氏鹿茸草群落结构的影响. 中药材, 2022, 45 (03): 561- 567. | |
Shi Y T, Zhu Z B, Guo Q S, et al. effects of human disturbance on the population structure of wild Monochasma savatieri. Journal of Chinese Medicinal Materials, 2022, 45 (03): 561- 567. | |
王豪吉, 官会林, 王 勇, 等. 2023. 自然林下与田间根腐三七根际微生物群落特征及比较分析. 微生物学通报, 50(5): 1988−2001. | |
Wang H J, Guan H L, Wang Y et al, 2023. Comparison of rhizosphere microbial community of Panax notoginseng with root rot under natural forest and in the field. Microbiology China. 50(5): 1988−2001. [in Chinese] | |
王 雪, 接伟光, 蔡柏岩. 不同生境黄檗 AM 真菌菌群结构分析. 林业科学, 2012, 48 (9): 99- 107.
doi: 10.11707/j.1001-7488.20120916 |
|
Wang X, Jie W G, Cai B Y. Community composition of the AM fungi of Phellodendron amurense in different habitats. Scientia Silvae Sinicae, 2012, 48 (9): 99- 107.
doi: 10.11707/j.1001-7488.20120916 |
|
王 艳, 郭良栋, 程虎印, 等. 不同生境重楼内生真菌及土壤真菌多样性比较. 微生物学通报, 2020, 47 (9): 2867- 2876. | |
Wang Y, Guo L D, Cheng H Y, et al. Comparison of endophytic and soil fungi of Paris Polyphylla diversity from different habitat. Microbiology China, 2020, 47 (9): 2867- 2876. | |
王 钰, 谭 均, 伍晓丽, 等. 自然林和人工搭棚种植模式下黄连根际土壤真菌群落结构变化. 中国中药杂志, 2020, 45 (21): 5160- 5168. | |
Wang Y, Tan J, Wu X L, et al. Variation in fungal community structures in rhizosphere soil of Coptis chinensis with cropping mode under natural forest and artificial shed. China Journal of Chinese Materia Medica, 2020, 45 (21): 5160- 5168. | |
辛晓静, 刘 磊, 申俊芳, 等. 羊草基因型数目与氮添加对土壤微生物群落的交互影响. 生态学报, 2016, 36 (13): 3923- 3932. | |
Xin X J, Liu L, Shen J F, et al. Interactions between genotypic number and nitrogen addition on soil microbial communities in the population of Leymus chinensis. Acta Ecologica Sinica, 2016, 36 (13): 3923- 3932. | |
薛银刚, 刘 菲, 周璐璐, 等. 基于高通量测序的工业园区地下水和土壤细菌群落结构比较研究. 生态毒理学报, 2017, 12 (6): 107- 115. | |
Xue Y G, Liu F, Zhou L L, et al. Comparison study of bacterial community structure between groundwater and soil in industrial park based on high throughput sequencing. Asian Journal of Ecotoxicology, 2017, 12 (6): 107- 115. | |
杨尚东, 郭 霜, 任奎喻, 等. 甘蔗宿根矮化病感病与非感病株根际土壤生物学性状及细菌群落结构特征. 植物营养与肥料学报, 2019, 25 (6): 910- 916. | |
Yang S D, Guo S, Ren K Y, et al. Soil biological properties and bacterial community structures in rhizosphere soil of canes infected and non-infected by ratoon stunting disease. Journal of Plant Nutrition and Fertilizers, 2019, 25 (6): 910- 916. | |
杨泽良, 任建行, 况园园, 等. 桂西北喀斯特不同植被演替阶段土壤微生物群落多样性. 水土保持研究, 2019, 26 (3): 185- 191. | |
Yang Z L, Ren J H, Kuang Y Y, et al. Dynamics of soil microbial communities along vegetation restoration gradient in Karst area. Research of Soil and Water Conservation, 2019, 26 (3): 185- 191. | |
张 香, 高佳琪, 袁 媛, 等. 基于Hiseq测序分析沉香不同层的细菌分布特征. 中国中药杂志, 2020, 45 (10): 2374- 2381. | |
Zhang X, Gao J Q, Yuan Y, et al. Analysis of bacteria distribution characteristics in different layers of agarwood based on Hiseq sequencing. China Journal of Chinese Materia Medica, 2020, 45 (10): 2374- 2381. | |
赵芸晨, 刘 畅, 闫 刚, 等. 连续施用猪粪对辣椒根际有益细菌与产量的影响. 蔬菜, 2023, (9): 34- 40. | |
Zhao Y C, Liu C, Yan G, et al. Effects of continuous application of pig manure on rhizosphere beneficial bacteria and yield of pepper. Vegetables, 2023, (9): 34- 40. | |
周倩怡, 李 屹, 韩 睿, 等. 根际促生菌缓解园艺作物连作障碍的研究进展. 生态学杂志, 2022, 41 (9): 1845- 1852. | |
Zhou Q Y, Li Y, Han R, et al. Research progress of using plant growth promoting rhizobacteria to alleviate continuous cropping obstacles of horticultural crops. Chinese Journal of Ecology, 2022, 41 (9): 1845- 1852. | |
Begum N, Qin C, Ahanger M A, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 2019, 10, 1068.
doi: 10.3389/fpls.2019.01068 |
|
de Vries F T, Griffiths R I, Knight C G, et al. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 2020, 368 (6488): 270- 274.
doi: 10.1126/science.aaz5192 |
|
Hooper D U, Bignell D E, Brown V K, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. BioScience, 2000, 50 (12): 1049.
doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 |
|
Huang W J, Long C L, Lam E. Roles of plant-associated microbiota in traditional herbal medicine. Trends in Plant Science, 2018, 23 (7): 559- 562.
doi: 10.1016/j.tplants.2018.05.003 |
|
Jiang Y N, Wang W X, Xie Q J, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356 (6343): 1172- 1175.
doi: 10.1126/science.aam9970 |
|
Kurth F, Zeitler K, Feldhahn L, et al. Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiology, 2013, 13 (1): 205.
doi: 10.1186/1471-2180-13-205 |
|
Li Y C, Li Z, Li Z W, et al. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L. ) continuous cropping soil by high‐throughput pyrosequencing approach. Journal of Applied Microbiology, 2016, 121 (3): 787- 799.
doi: 10.1111/jam.13225 |
|
Liu Y L, He W J, Mo L, et al. Antimicrobial, anti-inflammatory activities and toxicology of phenylethanoid glycosides from Monochasma savatieri Franch. ex Maxim. Journal of Ethnopharmacology, 2013, 149 (2): 431- 437.
doi: 10.1016/j.jep.2013.06.042 |
|
Luan F G, Zhang L L, Lou Y Y, et al. Analysis of microbial diversity and niche in rhizosphere soil of healthy and diseased cotton at the flowering stage in southern Xinjiang. Genetics and Molecular Research, 2015, 14 (1): 1602- 1611.
doi: 10.4238/2015.March.6.7 |
|
Mateos-Rivera A, Yde J C, Wilson B, et al. The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway). FEMS Microbiology Ecology, 2016, 92 (4): 1- 13. | |
Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 2011, 6 (2): e17000.
doi: 10.1371/journal.pone.0017000 |
|
Nemat H, Ali Shah A, Akram W, et al. Ameliorative effect of co-application of Bradyrhizobium japonicum EI09 and Se to mitigate chromium stress in Capsicum annum L. International Journal of Phytoremediation, 2020, 22 (13): 1396- 1407.
doi: 10.1080/15226514.2020.1780412 |
|
Pendergast T H IV, Burke D J, Carson W P. Belowground biotic complexity drives aboveground dynamics: a test of the soil community feedback model. New Phytologist, 2013, 197 (4): 1300- 1310.
doi: 10.1111/nph.12105 |
|
Rodríguez-Blanco A, Sicardi M, Frioni L. Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize (Zea mays L. ). Biology and Fertility of Soils, 2015, 51 (3): 391- 402.
doi: 10.1007/s00374-014-0986-8 |
|
Shi S J, Nuccio E, Herman D J, et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio, 2015, 6 (4): 1- 8.. | |
Stewart A J, Chapman W, Jenkins G I, et al. 2001. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell & Environment, 24(11): 1189−1197. | |
Su J M, Wang Y Y, Bai M, et al. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata ‘Chachi’. Microbiome, 2023, 11 (1): 61.
doi: 10.1186/s40168-023-01504-2 |
|
Uroz S, Ioannidis P, Lengelle J, et al. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS One, 2013, 8 (2): e55929.
doi: 10.1371/journal.pone.0055929 |
|
Yang Y, He J, Liu Y X, et al. Assessment of Chinese suitable habitats of Zanthoxylum nitidum in different climatic conditions by Maxent model, HPLC, and chemometric methods. Industrial Crops and Products, 2023, 196, 116515.
doi: 10.1016/j.indcrop.2023.116515 |
|
Yuan Y L, Si G C, Wang J, et al. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiology Ecology, 2014, 87 (1): 121- 132.
doi: 10.1111/1574-6941.12197 |
|
Zhang M H, Chen Y L, Ouyang Y, et al. The biology and haustorial anatomy of semi-parasitic Monochasma savatieri Franch. ex Maxim. Plant Growth Regulation, 2015, 75 (2): 473- 481.
doi: 10.1007/s10725-014-0010-1 |
|
Zhang Y Y, Chen Y L, Zhang X H, et al. Adventitious shoot induction from internode and root explants in a semiparasitic herb Monochasma savatieri franch ex maxim. Journal of Plant Growth Regulation, 2017, 36 (3): 799- 804.
doi: 10.1007/s00344-017-9681-y |
|
Zhou Y, Yang Z, Liu J, et al. Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease. Nature Communications, 2023, 14 (1): 8126.
doi: 10.1038/s41467-023-43926-4 |
[1] | 张盛晰,何炎红,郝龙飞,聂正英,刘婷岩,王云鹏,滑永春. 土壤微生物和氮添加对柠条根际微生境及根系形态的调控作用[J]. 林业科学, 2024, 60(9): 80-89. |
[2] | 肖欢,叶尔江·拜克吐尔汗,张春雨,赵秀海. 长白山阔叶红松林林层群落结构与生产力的关系[J]. 林业科学, 2024, 60(3): 57-64. |
[3] | 刘相荣,孙启武,厚凌宇,庞忠义,张琰琳,丁昌俊. 松辽平原杨树人工林土壤微生物群落结构及其功能多样性的林龄差异[J]. 林业科学, 2024, 60(11): 25-36. |
[4] | 谢宪,邓勋,宋丽文,梁军. 落叶松枯梢病罹病叶及病梢真菌多样性[J]. 林业科学, 2024, 60(10): 76-85. |
[5] | 李志,薛晓焱,刘震,蔡齐飞,耿晓东,冯建,周慧娜,张涛,李明婉,王艳梅. 山桐子健康和感病植株不同器官区细菌群落结构、多样性与功能预测分析[J]. 林业科学, 2022, 58(8): 136-148. |
[6] | 李斌,史鸿翔,刘兰兰,杨璞,张欣,陈航,冯颖,陈晓鸣. 女贞叶、茎、根及根际土壤真菌群落结构及功能群特征[J]. 林业科学, 2022, 58(5): 102-112. |
[7] | 粟佳琳,王娟,范春雨,张春雨,赵秀海. 吉林蛟河针阔混交林群落邻体竞争效应[J]. 林业科学, 2022, 58(5): 187-194. |
[8] | 丛微,于晶晶,喻海茫,丁易,张于光. 不同气候带森林土壤微生物多样性和群落构建特征[J]. 林业科学, 2022, 58(2): 70-79. |
[9] | 陈永忠,刘彩霞,许彦明,张震,彭映赫,陈隆升,苏以荣,王瑞,唐炜. 生草栽培对油茶林土壤微生物群落结构和稳定性的影响[J]. 林业科学, 2022, 58(11): 61-70. |
[10] | 程静,王海香,薛婉怡,邓彩萍. 异质生境下访花昆虫对枣花生物学特性的适应性[J]. 林业科学, 2021, 57(8): 121-132. |
[11] | 张维伟,赵忠,刘金良,邓平. 桥山林区3种麻栎群落类型的种群动态与幼苗特征[J]. 林业科学, 2021, 57(7): 1-10. |
[12] | 赵鹏宇,白雪,燕平梅,赵晓东,武晓英,柴宝峰. 华北落叶松林土壤细菌群落结构与表型的环境异质性响应[J]. 林业科学, 2021, 57(7): 101-110. |
[13] | 王业勤,李露,于海悦,赵新元,张楠,安菁,丁长青. 次级洞巢鸟类对不同生境下人工巢箱的选择[J]. 林业科学, 2021, 57(12): 99-107. |
[14] | 庞荣荣,彭潔莹,闫琰. 太白山次生锐齿栎林地上生物量影响因素[J]. 林业科学, 2021, 57(10): 157-165. |
[15] | 谢宪, 梁军, 朱彦鹏, 胡瑞瑞, 程元, 张星耀. 赤松纯林不同松枯梢病病级针叶的内生真菌多样性及群落结构[J]. 林业科学, 2020, 56(9): 51-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||