|
郝龙飞, 刘婷岩, 何永琴, 等. 菌根真菌调控灌木铁线莲根际土壤生态化学计量特征对氮沉降的应激响应. 林业科学, 2022, 58 (6): 151- 160.
doi: 10.11707/j.1001-7488.20220615
|
|
Hao L F, Liu T Y, He Y Q, et al. Responses of rhizosphere soil stoichiometry of Clematis fruticosa inoculated with arbuscular mycorrhizal fungi to nitrogen deposition. Scientia Silvae Sinicae, 2022, 58 (6): 151- 160.
doi: 10.11707/j.1001-7488.20220615
|
|
蒋凯鑫, 于坤霞, 李 鹏, 等. 砒砂岩区典型淤地坝沉积泥沙特征及来源分析. 水土保持学报, 2020, 34 (1): 47- 53.
|
|
Jiang K X, Yu K X, Li P, et al. Sediment characteristics and sources analysis of typical check dam in Pisha sandstone area. Journal of Soil and Water Conservation, 2020, 34 (1): 47- 53.
|
|
刘瑞雪, 吴泓瑾, 黄国柱, 等. 氮添加对树木根系特性的影响. 应用生态学报, 2019, 30 (5): 1735- 1742.
|
|
Liu R X, Wu H J, Huang G Z, et al. Effects of nitrogen addition on tree root traits. Chinese Journal of Applied Ecology, 2019, 30 (5): 1735- 1742.
|
|
刘婷岩, 郝龙飞, 王续富, 等. 氮沉降及菌根真菌对长白落叶松苗木根系构型及根际酶活性的影响. 植物研究, 2021, 41 (1): 145- 151.
|
|
Liu T Y, Hao L F, Wang X F, et al. Effects of nitrogen deposition and ectomycorrhizal fungi on root architecture and rhizosphere soil enzyme activities of Larix olgensis seedlings. Bulletin of Botanical Research, 2021, 41 (1): 145- 151.
|
|
刘伟玮, 刘某承, 李文华, 等. 辽东山区林参复合经营土壤质量评价. 生态学报, 2017, 37 (8): 2631- 2641.
|
|
Liu W W, Liu M C, Li W H, et al. Soil quality assessment of a forest-ginseng agroforestry system in the mountainous region of eastern Liaoning Province, Northeast China. Acta Ecologica Sinica, 2017, 37 (8): 2631- 2641.
|
|
李赵毅, 郝龙飞, 刘婷岩, 等. 接种丛枝菌根真菌对模拟大气氮沉降下灌木铁线莲根系形态及养分承载的影响. 植物研究, 2022, 42 (5): 886- 895.
doi: 10.7525/j.issn.1673-5102.2022.05.020
|
|
Li Z Y, Hao L F, Liu T Y, et al. AM fungi inoculation on root morphology and nutrient loading of Clematis fruticosa seedlings under simulated atmospheric nitrogen deposition. Bulletin of Botanical Research, 2022, 42 (5): 886- 895.
doi: 10.7525/j.issn.1673-5102.2022.05.020
|
|
李宗明, 沈菊培, 张丽梅, 等. 模拟氮沉降对干旱半干旱温带草原土壤细菌群落结构的影响. 环境科学, 2018, 39 (12): 5665- 5671.
|
|
Li Z M, Shen J P, Zhang L M, et al. Effects of stimulated nitrogen deposition on the bacterial community structure of semiarid temperate grassland. Environmental Science, 2018, 39 (12): 5665- 5671.
|
|
王子婷, 柴春山, 张洋东, 等. 半干旱黄土区柠条生长与环境因子的关系研究进展. 中国水土保持, 2021, 466 (1): 49- 52.
doi: 10.3969/j.issn.1000-0941.2021.01.018
|
|
Wang Z T, Chai C S, Zhang Y D, et al. Research progress on the relationship between Caragana korshinskii growth and environmental factors in semi-arid loess region. Soil and Water Conservation in China, 2021, 466 (1): 49- 52.
doi: 10.3969/j.issn.1000-0941.2021.01.018
|
|
韦莉莉, 卢昌熠, 丁 晶, 等. 丛枝菌根真菌参与下植物—土壤系统的养分交流及调控. 生态学报, 2016, 36 (14): 4233- 4243.
|
|
Wei L L, Lu C Y, Ding J, et al. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system. Acta Ecologica Sinica, 2016, 36 (14): 4233- 4243.
|
|
谢 欢, 张秋芳, 陈廷廷, 等. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性. 植物生态学报, 2022, 46 (7): 811- 822.
doi: 10.17521/cjpe.2021.0280
|
|
Xie H, Zhang Q F, Chen T T, et al. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition. Chinese Journal of Plant Ecology, 2022, 46 (7): 811- 822.
doi: 10.17521/cjpe.2021.0280
|
|
Allsup C M, George I, Lankau R A. Shifting microbial communities can enhance tree tolerance to changing climates. Science, 2023, 380 (6647): 835- 840.
|
|
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 2009, 68 (1): 1- 13.
doi: 10.1111/j.1574-6941.2009.00654.x
|
|
Bin J, Li J, Yanming Z, et al. Leguminous Caragana korshinskii evidently enhances microbial necromass carbon accumulation in dryland soils. Catena, 2022, 215, 106342.
doi: 10.1016/j.catena.2022.106342
|
|
Baldrian P, López-Mondéjar R, Kohout P. 2023. Forest microbiome and global change. nature reviews. Microbiology, 21(8): 487−501.
|
|
Chevallier T. Standard soil methods for long-term ecological research. Geoderma, 2001, 104 (1): 182- 183..
|
|
Daniel A, Dylan B M, Xin Chen. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 2019, 33 (1): 100- 107.
doi: 10.1029/2018GB005990
|
|
Deng L, Peng C H, Kim D G, et al. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 2021, 214 (0): 103501.
|
|
Gong W L, Chao X, Qian H J, et al. Soil carbon, nitrogen, and phosphorus cycling microbial populations and their resistance to global change depend on soil C: N: P stoichiometry. mSystems, 2020, 5 (3): e00162.
|
|
Jia X Y, Zhong Y Q W, Liu J, et al. Effects of nitrogen enrichment on soil microbial characteristics: From biomass to enzyme activities. Geoderma, 2020, 366 (0): 114256.
|
|
Kumar S, Singh K A, Ghosh P. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mine-land chronosequence under tropical condition. Science of the Total Environment, 2018, 625 (1): 1341- 1350.
|
|
Lastovetsky O A, Caruso T, Brennan F P, et al. Evidence of a selective and bi-directional relationship between arbuscular mycorrhizal fungal and bacterial communities co-inhabiting plant roots. Environmental Microbiology, 2022, 24 (11): 5378- 5391.
doi: 10.1111/1462-2920.16227
|
|
Rodríguez-Caballero G, Caravaca F, Fernández-González A J, et al. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Science of the Total Environment, 2017, 584-585 (1): 838- 848.
|
|
Shi J C, Wang X L, Wang E T. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems. Annual Review of Plant Biology, 2023, 74, 569- 607.
doi: 10.1146/annurev-arplant-061722-090342
|
|
Smith S E, Read D J, 2008. Mycorrhizal symbiosis. Academic Press, New York, 1−10.
|
|
Stock S C, Koester M, Boy J, et al. 2021 Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies. Science of the Total Environment, 781: 146748.
|
|
Song X, Gu H, Wang M, et al. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition. Scientific Reports, 2016, 6 (4): 24107.
|
|
Tapia-Torres Y, Elser J J, Souza V, et al. Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil. Soil Biology & Biochemistry, 2015, 87, 34- 42.
|
|
Veresoglou S D, Sen R, Mamolos A P, et al. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. Journal of Ecology, 2011, 99 (6): 1339- 1349.
doi: 10.1111/j.1365-2745.2011.01863.x
|
|
Wright S F, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science, 1996, 161 (9): 575- 586.
doi: 10.1097/00010694-199609000-00003
|