林业科学 ›› 2023, Vol. 59 ›› Issue (3): 94-103.doi: 10.11707/j.1001-7488.LYKX20210794
韩璐1(),赵涵1,王薇1,刘文辉1,姜在民2,蔡靖1,3,*(
)
收稿日期:
2021-10-22
出版日期:
2023-03-25
发布日期:
2023-05-27
通讯作者:
蔡靖
E-mail:1968604959@qq.com;cjcaijing@163.com
基金资助:
Lu Han1(),Han Zhao1,Wei Wang1,Wenhui Liu1,Zaimin Jiang2,Jing Cai1,3,*(
)
Received:
2021-10-22
Online:
2023-03-25
Published:
2023-05-27
Contact:
Jing Cai
E-mail:1968604959@qq.com;cjcaijing@163.com
摘要:
目的: 研究不同生长速率白杨杂交子代有无脆弱性分割、脆弱性分割差异及与生长的关系,为脆弱性分割假说检验提供试验证据,也为杨树耐旱性评价及生长策略提供支撑。方法: 以快速(K)、中速(Z)、慢速(M)3种生长速率类型的4年生白杨杂交子代为研究材料,每种子代类型选3~6株单株,测定其地上生物量(AGB)、中午叶水势(Ψmiddy)以及根、枝、叶的栓塞脆弱性(P50),计算叶片与枝条的水力安全边际(HSM),测定木质部导管水力结构指标导管直径(DV)、导管水力直径(DH)、导管密度(VD)、导管腔占比(FL)和导管抗垮塌能力(t/b)2。结果: 1) 地上生物量中K>Z>M,且M显著小于K和Z。2) 枝条的P50中M显著低于K和Z,而叶片和根段的P50在K、Z、M间无显著性差异;不同器官间,枝条的P50低于叶片和根段。3) 在导管水力结构上,M枝条的导管直径、导管水力直径、b值显著低于K和Z,(t/b)2显著高于K和Z,M叶片的导管直径与Z相近,但显著低于K;M根段的导管密度显著大于K和Z,其余指标无显著差异。不同器官间,导管直径沿水力路径由根到叶片逐渐缩小,根段导管直径最大为叶片的5.12倍,而导管密度由根到枝条逐渐增大,根段的导管密度仅是枝条的1/4。4) 3种子代类型均存在脆弱性分割现象,其中M的分割程度最大,略高于K,是Z的2倍;在叶片水力安全边际上,Z的更宽,K与M的较窄甚至为负,而枝条的水力安全边际在三者之间相差较小。结论: 不同生长速率的3种杂交杨子代均存在栓塞脆弱性分割,其中生长最慢的M的分割程度最大。不同器官的栓塞脆弱性差异可通过导管直径、(t/b)2等导管水力结构得以反映。枝条木质部导管水力结构的差异可能是造成K、Z、M脆弱性分割程度不同的主要原因。与K和Z相比,生长速率最慢的M的枝条栓塞抗性更高、脆弱性分割程度更大,二者可能共同作用以保全枝干免受水力失败,但这可能以牺牲生长速率为代价来实现,表明脆弱性分割程度提高可能不利于植物生长。
中图分类号:
韩璐,赵涵,王薇,刘文辉,姜在民,蔡靖. 白杨杂交子代栓塞脆弱性分割及与生长的关系[J]. 林业科学, 2023, 59(3): 94-103.
Lu Han,Han Zhao,Wei Wang,Wenhui Liu,Zaimin Jiang,Jing Cai. Hydraulic Vulnerability Segmentation and Its Correlation with Growth in Hybrid Poplar[J]. Scientia Silvae Sinicae, 2023, 59(3): 94-103.
表1
主要符号、单位及定义对照表"
符号 Symbol | 单位 Unit | 定义 Definition |
AGB | g | 地上生物量 Aboveground biomass |
P12 | MPa | 造成导水率/水力导度损失12%时的水势值 Water potential causing 12% loss of hydraulic conductivity or conductance |
P50 | MPa | 造成导水率/水力导度损失50%时的水势值 Water potential causing 50% loss of hydraulic conductivity or conductance |
P88 | MPa | 造成导水率/水力导度损失88%时的水势值 Water potential causing 88% loss of hydraulic conductivity or conductance |
Ψmiddy | MPa | 正午水势Middy leaf water potential |
HSM | MPa | 水力安全边际 Hydraulic safety margin |
DH | μm | 导管水力直径 Hydraulic weighted vessel diameter |
DV | μm | 平均导管直径 Mean vessel diameter |
VD | N·mm?2 | 导管密度 Vessel density |
FL | 导管腔占比 The fraction of vessel lumen | |
t | μm | 导管间的壁厚度 Double vessel wall thickness |
b | μm | 导管内径跨度 Conduits wall span |
(t/b)2 | 导管抗垮塌指标 Thickness-to-span ratio |
表2
K、Z、M的生长指标及根、枝、叶的水力学特性指标(均值±标准误)①"
项目 Item | K | Z | M |
地上生物量 | |||
AGB/g | 3 932.76±112.68a | 3 611.52±106.51a | 2182.13±81.33b |
水力特征值 Hydraulic properties | |||
叶片 Leaf | |||
P12/MPa | ?0.48 | ?0.66 | ?0.57 |
P50/MPa | ?1.27 | ?1.49 | ?1.31 |
P88/MPa | ?2.40 | ?2.56 | ?2.26 |
枝条 Branch | |||
P12/MPa | ?1.47±0.10a | ?1.36±0.12a | ?1.90±0.12b |
P50/MPa | ?2.08±0.07a | ?2.01±0.10a | ?2.47±0.09b |
P88/MPa | ?2.62±0.06a | ?2.60±0.12a | ?2.94±0.06b |
根段 Root segment | |||
P12/MPa | ?0.72±0.05a | ?0.74±0.05a | ?0.84±0.12a |
P50/MPa | ?1.38±0.04a | ?1.46±0.07a | ?1.44±0.10a |
P88/MPa | ?2.16±0.08a | ?2.30±0.13a | ?2.07±0.11a |
leaf P50-branch P50 | 0.81 | 0.52 | 1.16 |
root P50- branch P50 | 0.70 | 0.55 | 1.03 |
Ψmiddy/MPa | ?1.17±0.07b | ?0.95±0.01a | ?1.41±0.03c |
HSMleaf/MPa | 0.10 | 0.54 | ?0.10 |
HSMbranch/MPa | 0.91 | 1.06 | 1.06 |
表3
根、枝、叶的导管解剖结构特征值(均值±标准误)①"
项目 Item | K | Z | M |
导管解剖结构特征Vessel anatomical traits | |||
叶片Leaf | |||
DH/μm | 19.46±1.64a | 16.25±0.41a | 15.29±0.68a |
DV/μm | 18.20±1.42a | 13.62±0.58b | 13.50±0.50b |
枝条Branch | |||
DH/μm | 34.40±0.33a | 33.60±0.83a | 31.12±0.40b |
DV/μm | 31.02±0.22a | 30.75±0.62a | 28.87±0.43b |
VD/(N· mm?2) | 230±13a | 224±15a | 226±16a |
FL | 0.187 6±0.011 7a | 0.175 1±0.008 0a | 0.155 1±0.008 0a |
t/μm | 5.38±0.15a | 5.58±0.11a | 5.79±0.24a |
b/μm | 30.37±0.32a | 30.73±0.58a | 27.46±0.41b |
(t/b)2 | 0.032±0.002b | 0.033±0.003b | 0.044±0.002a |
根段Root segment | |||
DH/μm | 80.16±6.57a | 79.21±3.12a | 71.24±0.68a |
DV/μm | 72.14±5.72a | 69.8±2.34a | 63.42±1.00a |
VD/(N·mm?2) | 52±2b | 57±4b | 66±3a |
FL | 0.228 3±0.030 8a | 0.240 8±0.022 6a | 0.225 9±0.010 2a |
t/μm | 8.85±0.51a | 8.56±1.05a | 8.19±0.35a |
b/μm | 73.10±6.08a | 72.85±3.82a | 64.51±2.05a |
(t/b)2 | 0.016±0.000 8a | 0.015±0.0031a | 0.017±0.000 5a |
李和平. 2009. 植物显微技术. 2版. 北京: 科学出版社, 1-285. | |
Li H P. 2009. Plant microscopy technique. 2nd edition. Beijing: Science Press, 1-285. [in Chinese] | |
李 荣, 姜在民, 张硕新, 等 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 2015, 39 (8): 838- 848.
doi: 10.17521/cjpe.2015.0080 |
|
Li R, Jiang Z M, Zhang S X, et al Recent advances in the study of xylem embolism vulnerability in woody plants. Chinese Journal of Plant Ecology, 2015, 39 (8): 838- 848.
doi: 10.17521/cjpe.2015.0080 |
|
张海昕, 李 姗, 张硕新, 等 4个杨树无性系木质部导管结构与栓塞脆弱性的关系. 林业科学, 2013, 49 (5): 54- 61.
doi: 10.11707/j.1001-7488.20130508 |
|
Zhang H Y, Li S, Zhang S X, et al Relationships between xylem vessel structure and embolism vulnerability in four Populus clones . Scientia Silvae Sinicae, 2013, 49 (5): 54- 61.
doi: 10.11707/j.1001-7488.20130508 |
|
赵 涵. 2021. 杨树水力学特性与生长速率及生物量的关系. 杨凌: 西北农林科技大学. | |
Zhao H. 2021. The relationships between poplar hydraulic traits and growth rate as well as biomass. Yangling: Northwest A&F University. [in Chinese] | |
Ahmad H B, Lens F, Capdeville G, et al Intraspecific variation in embolism resistance and stem anatomy across four sunflower (Helianthus annuus L.) accessions . Physiologia Plantarum, 2018, 163 (1): 59- 72.
doi: 10.1111/ppl.12654 |
|
Avila R T, Cardoso A A, Batz T A, et al Limited plasticity in embolism resistance in response to light in leaves and stems in species with considerable vulnerability segmentation. Physiologia Plantarum, 2021, 172 (4): 2142- 2152.
doi: 10.1111/ppl.13450 |
|
Bittencourt P R, Pereira L, Oliveira R S Pneumatic method to measure plant xylem embolism. Bio-protocol, 2018, 8 (20): 1- 14. | |
Blackman C J, Li X M, Choat B, et al Desiccation time during drought is highly predictable across species of Eucalyptus from contrasting climates . New Phytologist, 2019, 224 (2): 632- 643.
doi: 10.1111/nph.16042 |
|
Bouche P S, Delzon S, Choat B, et al. 2016. Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant, Cell and Environment, 39(4): 860−870. | |
Brodribb T J, Holbrook N M Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology, 2003, 132 (4): 2166- 2173.
doi: 10.1104/pp.103.023879 |
|
Brodribb T J, Holbrook N M, Zwieniecki M A, et al Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytologist, 2005, 165 (3): 839- 846.
doi: 10.1111/j.1469-8137.2004.01259.x |
|
Cai J, Hacke U, Zhang S X, et al What happens when stems are embolized in a centrifuge? Testing the cavitron theory. Physiologia Plantarum, 2010, 140 (4): 311- 320.
doi: 10.1111/j.1399-3054.2010.01402.x |
|
Cai J, Tyree M T. 2010. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell and Environment, 33(7): 1059−1069. | |
Choat B, Jansen S, Brodribb T J, et al Global convergence in the vulnerability of forests to drought. Nature, 2012, 491 (7426): 752- 756.
doi: 10.1038/nature11688 |
|
Cochard H, Barigah S T, Kleinhentz M, et al. 2008. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? Journal of Plant Physiology, 165(9): 976−982. | |
Cochard H, Casella E, Mencuccini M Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield. Tree Physiology, 2007, 27 (12): 1761- 1767.
doi: 10.1093/treephys/27.12.1761 |
|
Creek D, Blackman C J, Brodribb T J, et al. 2018. Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery. Plant, Cell and Environment, 41(12): 2869−2881. | |
Eller C B, Barros F D, Bittencourt P R L, et al. 2018. Xylem hydraulic safety and construction costs determine tropical tree growth. Plant, Cell and Environment, 41(3): 548−562. | |
Fichot R, Barigah T S, Chamaillard S, et al. 2010. Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoids × Populus nigra hybrids. Plant, Cell and Environment, 33(9): 1553−1568. | |
Fichot R, Brignolas F, Cochard H, et al. 2015. Vulnerability to drought-induced cavitation in poplars: synthesis and future opportunities. Plant, Cell and Environment, 38(7): 1233−1251. | |
Hacke U G, Jacobsen A L, Pratt R B. 2009. Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis. Plant, Cell and Environment, 32(10): 1324−1333. | |
Hacke U G, Sperry J S, Wheeler J K, et al Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 2006, 26 (6): 689- 701.
doi: 10.1093/treephys/26.6.689 |
|
Hajek P, Leuschner C, Hertel D, et al Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus . Tree Physiology, 2014, 34 (7): 744- 756.
doi: 10.1093/treephys/tpu048 |
|
Hukin D, Cochard H, Dreyer E, et al. 2005. Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv. , a poplar from arid areas of Central Asia, differ from other poplar species? Journal of Experimental Botany, 56(418): 2003−2010. | |
Jin Y, Wang C K, Zhou Z H Conifers but not angiosperms exhibit vulnerability segmentation between leaves and branches in a temperate forest. Tree Physiology, 2019, 39 (3): 454- 462.
doi: 10.1093/treephys/tpy111 |
|
Johnson D M, Wortemann R, McCulloh K A, et al A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 2016, 36 (8): 983- 993.
doi: 10.1093/treephys/tpw031 |
|
Johnson K M, Brodersen C, Carins-Murphy M R, et al Xylem embolism spreads by single-conduit events in three dry forest angiosperm stems. Plant physiology, 2020, 184 (1): 212- 222.
doi: 10.1104/pp.20.00464 |
|
Klepsch M, Zhang Y, Kotowska M M, et al Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from micro-CT, hydraulics, and anatomy. Journal of Experimental Botany, 2018, 69 (22): 5611- 5623. | |
Lemoine D, Cochard H, Granier A Within crown variation in hydraulic architecture in beech (Fagus sylvatica L . ):evidence for a stomatal control of xylem embolism. Annals of Forest Science, 2002, 59 (1): 19- 27. | |
Levionnois S, Ziegler C, Jansen S, et al Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees. New Phytologist, 2020, 228 (2): 512- 524.
doi: 10.1111/nph.16723 |
|
Li X M, Delzon S, Torres-Ruiz J, et al Lack of vulnerability segmentation in four angiosperm tree species: evidence from direct X-ray microtomography observation. Annals of Forest Science, 2020, 77 (2): 1- 12. | |
Losso A, Bär A, Dämon B, et al Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings . New Phytologist, 2019, 221 (4): 1831- 1842.
doi: 10.1111/nph.15549 |
|
Maherali H, Moura C F, Caldeira M C, et al. 2006. Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell and Environment, 29(4): 571−583. | |
McDowell N, Pockman W T, Allen C D, et al. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4): 719−739. | |
Nardini A, Pedà G, La Rocca N Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences. New Phytologist, 2012, 196 (3): 788- 798.
doi: 10.1111/j.1469-8137.2012.04294.x |
|
Nolf M, Creek D, Duursma R, et al. 2015. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant, Cell and Environment, 38(12): 2652−2661. | |
Pammenter N W, Vander Willigen C A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 1998, 18 (8): 589- 593. | |
Peguero-Pina J J, Sancho-Knapik D, Martin P, et al Evidence of vulnerability segmentation in a deciduous Mediterranean oak (Quercus subpyrenaica E.H. del Villar) . Trees-Structure and Function, 2015, 29 (6): 1917- 1927.
doi: 10.1007/s00468-015-1273-5 |
|
Pereira L, Bittencourt P R L, Pacheco V S, et al. 2020. The pneumatron: an automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. Plant, Cell and Environment, 43(1): 131−142. | |
Rawlings J O, Cure W W The weibull function as a dose-response model to describe ozone effects on crop yields. Crop Science, 1985, 25, 807- 814.
doi: 10.2135/cropsci1985.0011183X002500050020x |
|
Rodriguez-Dominguez C M, Carins-Murphy M R, Lucani C, et al Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytologist, 2018, 218 (3): 1025- 1035.
doi: 10.1111/nph.15079 |
|
Rosner S, Klein A, Müller U, et al Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure. Tree Physiology, 2007, 27 (8): 1165- 1178.
doi: 10.1093/treephys/27.8.1165 |
|
Scholz F G, Bucci S J, Goldstein G Strong hydraulic segmentation and leaf senescence due to dehydration may trigger die-back in Nothofagus dombeyi under severe droughts: a comparison with the co-occurring Austrocedrus chilensis . Trees-Structure and Function, 2014, 28 (5): 1475- 1487.
doi: 10.1007/s00468-014-1050-x |
|
Skelton R P, Brodribb T J, Choat B Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytologist, 2017, 214 (2): 561- 569.
doi: 10.1111/nph.14450 |
|
Skelton R P, Dawson T E, Thompson S E, et al Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiology, 2018, 177 (3): 1066- 1077.
doi: 10.1104/pp.18.00103 |
|
Tyree M T, Cochard H, Cruiziat P, et al. 1993. Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant, Cell and Environment, 16(7): 879−882. | |
Tyree M T, Ewers F W The hydraulic architecture of trees and other woody plants. New Phytologist, 1991, 119 (3): 345- 360.
doi: 10.1111/j.1469-8137.1991.tb00035.x |
|
Villagra M, Campanello P I, Bucci S J, et al Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiology, 2013, 33 (12): 1308- 1318.
doi: 10.1093/treephys/tpt098 |
|
Wikberg J, Ögren E Interrelationships between water use and growth traits in biomass-producing willows. Trees-Structure and Function, 2004, 18 (1): 70- 76.
doi: 10.1007/s00468-003-0282-y |
|
Willson C J, Manos P S, Jackson R B Hydraulic traits are influenced by phylogenetic history in the drought-resistant, invasive genus Juniperus (Cupressaceae) . American Journal of Botany, 2008, 95 (3): 299- 314.
doi: 10.3732/ajb.95.3.299 |
|
Wu M, Zhang Y, Oya T, et al Root xylem in three woody angiosperm species is not more vulnerable to embolism than stem xylem. Plant and Soil, 2020, 450, 479- 495.
doi: 10.1007/s11104-020-04525-0 |
|
Zhao H, Jiang Z M, Zhang Y J, et al Hydraulic efficiency at the whole tree level stably correlated with productivity over years in 9 poplar hybrids clones. Forest Ecology and Management, 2021, 496, 1- 10. | |
Zhu S D, Liu H, Xu Q Y, et al. 2016. Are leaves more vulnerable to cavitation than branches? Functional Ecology, 30(11): 1740−1744. | |
Zimmermann M H Xylem structure and the ascent of sap. Science, 1983, 222 (4623): 1- 500. |
[1] | 王卫锋,赵瑜琦,高苗琴,宗毓铮,郝兴宇. 群众杨幼苗叶光合特性与碳氮分配对CO2浓度和气温升高的响应[J]. 林业科学, 2023, 59(2): 40-47. |
[2] | 陈赢男,胡传景,诸葛强,胡建军,尹佟明. 杨树农杆菌遗传转化研究30年[J]. 林业科学, 2022, 58(12): 114-129. |
[3] | 张友静,李月阳,赵涵,程玉弯,王薇,姜在民,蔡靖. 6个白杨无性系水力效率与气体交换及生长的关系[J]. 林业科学, 2022, 58(11): 118-126. |
[4] | 张伟溪,王颜波,丁昌俊,朱文旭,苏晓华. 成龄转基因银中杨试验林外源基因水平转移及土壤微生物连年监测[J]. 林业科学, 2022, 58(1): 52-61. |
[5] | 唐芳,赵树堂,王丽娟,宋学勤,卢孟柱. 毛白杨次生维管系统再生过程的基因表达[J]. 林业科学, 2021, 57(9): 52-65. |
[6] | 李雪燕,熊典广,田呈明. 杨树腐烂病菌胞外分泌复合体亚基CcExo70的功能[J]. 林业科学, 2021, 57(8): 82-93. |
[7] | 陈越渠,刘庆珍,李立梅,张杨,韩姣,张永安. 杨树溃疡病拮抗链霉菌的筛选及鉴定[J]. 林业科学, 2021, 57(7): 92-100. |
[8] | 刘辉,吴小芹,叶建仁,陈丹. 荧光假单胞菌的溶磷机制及其在杨树菌根际的定殖动态[J]. 林业科学, 2021, 57(3): 90-97. |
[9] | 孙伟博,宫新栋,周燕,李红岩. 转玉米PEPC和PPDK基因杨树苗期的光合生理特性[J]. 林业科学, 2020, 56(7): 33-43. |
[10] | 何经纬,张伊莹,田呈明,熊典广,梁英梅. 区域景观格局对杨树锈病为害流行的影响——以北京延庆地区银白杨为例[J]. 林业科学, 2020, 56(4): 99-108. |
[11] | 刘文鑫,陈志成,代永欣,万贤崇. 水通道蛋白PIP1基因过表达杨树的光合生理过程对干旱和复水的响应[J]. 林业科学, 2020, 56(2): 69-78. |
[12] | 沈阔程,陈倩文,齐梅,彭子嘉,樊军锋,余仲东. 杨树叶片结构与抗锈菌侵染的相关性[J]. 林业科学, 2020, 56(12): 75-82. |
[13] | 孙伟博,魏朝琼,马晓星,魏辉,诸葛强. 3类转基因南林895杨田间试验的安全性评估[J]. 林业科学, 2020, 56(10): 53-62. |
[14] | 张超, 王进茂, 赵洁, 庞丁玮, 张德健, 杨敏生. 转多基因欧美杨Bt基因表达特征[J]. 林业科学, 2019, 55(9): 61-70. |
[15] | 辛福梅, 闫小莉, 张长耀, 贾黎明. 西藏拉萨河谷区藏川杨和北京杨树干液流特征及其对环境因子的响应[J]. 林业科学, 2019, 55(2): 22-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||