姜 柯,李艾华,苏延召. 2013. 结合边缘纹理和抽样推断的自适应阴影检测算法.西安交通大学学报, 47(2):39-46.
(Jiang K, Li A H, Su Y Z.2013. An adaptive shadow detection algorithm using edge texture and sampling deduction. Journal of Xi'an Jiaotong University, 47(2):39-46.[in chinese])
李朝锋,潘婷婷. 2009. 基于形态学开闭运算和梯度优化的分水岭算法的目标检测方法.计算机应用研究, 26(4): 1593-1594.
(Li C F, Pan T T.2009. Object detection method based on morphological opening-and-closing operation and gradient optimization. Application Research of Computers, 26(4): 1593-1594.[in chinese])
田俊霞,穆国燕. 2002. 基于边界特征的一维最大熵图像分割算法的研究与实现. 计算机工程与科学, 24(6): 46-47.
(Tian J X, Mu G Y.2002. Research and implementation of one-dimensional maximum-entropy threshold images segmentation based on edge feature. Computer Engineering & Science, 24(6): 46-47.[in chinese])
王树文, 闫成新, 张天序, 等. 2005. 数学形态学在图像处理中的应用.计算机工程与应用, 40(32): 89-92.
(Wang S W, Yan C X, Zhang T X, et al. 2005. Application of mathematical morphology in image processing. Computer Engineering and Applications, 40(32): 89-92.[in chinese])
王 游,石成英,高明贺,等. 2013. 基于直方图阈值改进方法的缝隙图像二值化研究.现代电子技术, 36(6): 97-99.
(Wang Y, Shi C Y, Gao M H, et al. Research on gap image binarization based on histogram threshold improved method. Modern Electronic Technique, 36(6): 97-99.[in chinese])
吴 鹏. 2014. 萤火虫算法优化最大熵的图像分割方法.计算机工程与应用, 50(12): 115-118.
(Wu P.2014. Image segmentation method based on firefly algorithm and maximum entropy method. Computer Engineering and Applications, 50(12): 115-118.[in chinese])
闫 蓓,王 斌,李 媛. 2008. 基于最小二乘法的椭圆拟合改进算法. 北京航空航天大学学报, 34(3): 295-298.
(Yan P, Wang B, Li Y.2008. Optimal ellipse fitting method based on least-square principle. Journal of Beijing University of Aeronautics and Astronautics, 34(3): 295-298.[in chinese])
张大坤, 罗三明. 2010. 形态学中闭运算功能的扩展及其应用.计算机工程与应用, 46(27): 185-187.
(Zhang D K, Luo S M.2010. Function extension of morphological closing operation and its application. Computer Engineering and Applications, 46(27): 185-187.[in chinese])
张新明,张爱丽,郑延斌,等.2011.改进的最大熵阈值分割及其快速实现. 计算机科学, 38(8): 278-283.
(Zhang X M, Zhang A L, Zheng T B, et al. Improved two-dimensional maximum entropy image thresholding and its fast recursive realization. Computer Science, 38(8): 278-283.[in chinese])
张怡卓,佟 川,李 想. 2012. 梯度算子与灰度阈值融合的实木地板节子识别方法研究.林业科技, 37(1):18-20.
(Zhang Y Z,Tong C, Li X.2012. Research of solid wood floor knot recognition based on gradient operators and gray level threshold, Forestry Science & Technology, 37(1):18-20.[in chinese])
Cavalin P, Oliveira L S, Koerich A L, et al. 2006. Wood defect detection using grayscale images and an optimized feature set. Industrial Electronics, IECON 2006-32th Annual Conference on, 3408-3412.
Duan R, Li Q, Li Y. 2005. Summary of image edge detection. Optical Technique, 3(3): 415-419.
Funck J W, Zhong Y, Butler D A, et al. 2003. Image segmentation algorithms applied to wood defect detection. Computers and Electronics in Agriculture, 41(1): 157-179.
Maini R, Aggarwal H. 2009. Study and comparison of various image edge detection techniques. International Journal of Image Processing (IJIP), 3(1): 1-11.
Pham D T, Soroka A J, Ghanbarzadeh A, et al. 2006. Optimising neural networks for identification of wood defects using the bees algorithm.Industrial Informatics, 2006 IEEE International Conference on, 1346-1351.
Ruz G A, Estévez P A, Perez C A. 2005. A neurofuzzy color image segmentation method for wood surface defect detection. Forest Products Journal, 55(4): 52-58.
Zhi W, Saixian H. 2004.An adaptive edge-detection method based on Canny algorithm. Journal of Image and Graphics, 9(8): 957-962. |