林业科学 ›› 2024, Vol. 60 ›› Issue (4): 173-182.doi: 10.11707/j.1001-7488.LYKX20220695
• • 上一篇
收稿日期:
2022-10-17
出版日期:
2024-04-25
发布日期:
2024-05-23
通讯作者:
雷静品
E-mail:15225969805@163.com
基金资助:
Jinyu Gong1(),Zhiyuan Ma1,Chen Hu1,Tian Li1,Jingpin Lei1,2,*
Received:
2022-10-17
Online:
2024-04-25
Published:
2024-05-23
Contact:
Jingpin Lei
E-mail:15225969805@163.com
摘要:
原始森林是指由乡土树种自然演替而成,没有明显人为干扰痕迹,生态过程没有受到明显影响的森林,其具有复杂的结构和生态功能,是自然界最稳定的碳储库和资源库,对全球气候调节及人类生存发展具有重要作用。在研究领域内明确、规范原始森林的概念和监测方法,有利于世界原始森林资源的清查、保护及监测。本研究在梳理国内外原始森林概念的基础上,归纳总结了原始森林特征,分析了国内外原始森林资源清查和监测的现状,综述了原始森林的重要生态功能:1)原始森林固碳能力存在的碳中性、碳源及碳库假说;2)原始森林具有优于其他森林的水文调节功能;3)原始森林是物种基因库,具有突出的生物多样性保护功能。基于目前对原始森林概念和监测中存在的问题,提出未来研究建议:在森林资源清查中将原始森林单独分类;加大对原始森林生态功能研究,开展原始森林固碳潜力、土壤呼吸的研究;增加原始森林水文调节能力研究,探索原始森林在缓解全球气候变化中的作用;探究原始森林生物多样性保护功能,减少全球生物多样性丧失。
中图分类号:
龚金玉,马致远,胡琛,李田,雷静品. 原始森林的概念、生态功能及研究进展[J]. 林业科学, 2024, 60(4): 173-182.
Jinyu Gong,Zhiyuan Ma,Chen Hu,Tian Li,Jingpin Lei. Concepts, Ecological Functions, and Research Progress of Primary Forest[J]. Scientia Silvae Sinicae, 2024, 60(4): 173-182.
表1
世界原始森林分布现状①"
地区 Region | 森林总面积 Total forest area /(104 hm2) | 原始森林总面积 Primary forest area/ (104 hm2) | 原始森林占森林总面积的 百分比 Primary forests as a percentage of total forest area(%) |
非洲东部和南部Eastern and southern Africa | 29 577.80 | 5 941.20 | 20.09 |
非洲北部Northern Africa | 3 515.10 | 128.40 | 3.65 |
非洲西部和中部Western and central Africa | 30 571.00 | 8 889.10 | 29.08 |
非洲总计 Total Africa | 63 663.90 | 14 958.70 | 23.50 |
东亚East Asia | 27 140.30 | 1 679.90 | 6.19 |
南亚和东南亚South and southeast Asia | 29 604.70 | 6 735.10 | 22.75 |
西亚和中亚Western and central Asia | 5 523.70 | 224.10 | 4.06 |
亚洲总计 Total Asia | 62 268.70 | 8 639.10 | 13.87 |
欧洲(除俄罗斯联邦) Europe excl. Russian | 20 215.00 | 418.00 | 2.07 |
欧洲总计 Total Europe | 101 746.10 | 25 939.20 | 25.49 |
加勒比地区 Caribbean | 788.90 | 18.40 | 2.33 |
中美洲 Central America | 2 240.40 | 65.80 | 2.94 |
北美洲 North America | 72 241.70 | 31 247.10 | 43.25 |
北美和中美洲总计 Total north and central America | 75 271.00 | 31 331.30 | 41.62 |
大洋洲总计 Total Oceania | 18 524.80 | 261.70 | 1.41 |
南美总计 Total south America | 84 418.60 | 29 869.80 | 35.38 |
世界 World | 405 893.10 | 110 999.80 | 27.35 |
曹 云, 欧阳志云, 郑 华, 等. 森林生态系统的水文调节功能及生态学机制研究进展. 生态环境, 2006, 15 (6): 1360- 1365. | |
Cao Y, Ouyang Z Y, Zheng H, et al. Hydrological adjusting function of forest ecosystems and ecological mechanism: a review. Ecology and Environmental Sciences, 2006, 15 (6): 1360- 1365. | |
段雯娟, 肖诗白. 中国原始森林分布图出炉. 地球, 2017, (4): 34- 36. | |
Duan W J, Xiao S B. China primeval forest distribution map released. Earth, 2017, (4): 34- 36. | |
龚诗涵, 肖 洋, 郑 华, 等. 中国生态系统水源涵养空间特征及其影响因素. 生态学报, 2017, 37 (7): 2455- 2462. | |
Gong S H, Xiao Y, Zheng H, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis. Acta Ecologica Sinica, 2017, 37 (7): 2455- 2462. | |
国家林业局. 2014. 中国森林资源报告: 2009—2013. 北京: 中国林业出版社. | |
State Forestry Administration. 2014. China forest resources report: 2009-2013. Beijing: China Forestry Publishing House. [in Chinese] | |
韩 春, 陈 宁, 孙 杉, 等. 森林生态系统水文调节功能及机制研究进展. 生态学杂志, 2019, 38 (7): 2191- 2199. | |
Han C, Chen Y, Sun S, et al. A review on hydrological mediating functions and mechanisms in forest ecosystems. Chinese Journal of Ecology, 2019, 38 (7): 2191- 2199. | |
洪菊生, 侯元兆. 分类经营是热带林业可持续发展的重要途径. 林业科学, 1999, 35 (1): 106- 112. | |
Hong J S, Hou Y Z. Differentiated forest management—an importent way towards sustainable development of tropical forestry. Scientia Silvae Sinicae, 1999, 35 (1): 106- 112. | |
胡 鸿, 杨雪清, 黄静华, 等. 北斗卫星导航在林业中的应用模式研究. 林业资源管理, 2017, (3): 120- 127. | |
Hu H, Yang X Q, Huang J H, et al. Research on application model of Beidou satellite navigation in forestry. Forest Resources Management, 2017, (3): 120- 127. | |
黄宝荣, 欧阳志云, 郑 华, 等. 生态系统完整性内涵及评价方法研究综述. 应用生态学报, 2006, 17 (11): 2196- 2202.
doi: 10.3321/j.issn:1001-9332.2006.11.039 |
|
Huang B R, Ouyang Z Y, Zheng H, et al. Connotation of ecological integrity and its assessment methods: a review. Chinese Journal of Applied Ecology, 2006, 17 (11): 2196- 2202.
doi: 10.3321/j.issn:1001-9332.2006.11.039 |
|
黄云长, 吴勇建. 森林资源调查监测技术的现状及发展. 南方农业, 2021, 15 (33): 81- 82,85. | |
Huang Y C, Wu Y J. Present situation and development of forest resources survey and monitoring technology. South China Agriculture, 2021, 15 (33): 81- 82,85. | |
蒋有绪. 川西亚高山冷杉林枯枝落叶层的群落学作用. 植物生态学与地植物学丛刊, 1981, 5 (2): 89- 98. | |
Jiang Y X. Phytocenological role of forest floor in subalpine fir forests in west Sichuan Province. Chinese Journal of Plant Ecology, 1981, 5 (2): 89- 98. | |
孔含笑, 沈 镭, 钟 帅, 等. 关于自然资源核算的研究进展与争议问题. 自然资源学报, 2016, 31 (3): 363- 376.
doi: 10.11849/zrzyxb.20150366 |
|
Kong H X, Shen L, Zhong S, et al. Research progress and controversial issues of natural resources accounting. Journal of Natural Resources, 2016, 31 (3): 363- 376.
doi: 10.11849/zrzyxb.20150366 |
|
雷静品, 肖文发, 刘建锋, 等. 森林退化及其评价研究. 林业科学, 2010, 46 (12): 153- 157. | |
Lei J P, Xiao W F, Liu J F, et al. Forest degradation and its evaluation. Scientia Silvae Sinicae, 2010, 46 (12): 153- 157. | |
李忠魁, 陈绍志, 张德成, 等. 对我国森林资源价值核算的评述与建议. 林业资源管理, 2016, (1): 9- 13. | |
Li Z K, Chen S Z, Zhang D C, et al. Value accounting of forest resources: comment and proposal. Forest Resources Management, 2016, (1): 9- 13. | |
刘建锋, 肖文发, 江泽平, 等. 景观破碎化对生物多样性的影响. 林业科学研究, 2005, 18 (2): 222- 226.
doi: 10.3321/j.issn:1001-1498.2005.02.023 |
|
Liu J F, Xiao W F, Jiang Z P, et al. A study on the influence of landscape fragmentation on biodiversity. Forest Research, 2005, 18 (2): 222- 226.
doi: 10.3321/j.issn:1001-1498.2005.02.023 |
|
刘 军, 张伟岩, 刘 侠, 等. 基于移动GIS的林业有害生物普查信息管理系统研究与应用. 中国森林病虫, 2015, 34 (3): 32- 37. | |
Liu J, Zhang W Y, Liu X, et al. Study and application of the forest pest survey information management system based on the mobile GIS. Forest Pest and Disease, 2015, 34 (3): 32- 37. | |
刘亚培, 陈绍志, 赵 荣, 等. 我国天然林保护修复研究概述. 世界林业研究, 2022, 35 (1): 82- 87. | |
Liu Y P, Chen S Z, Zhao R, et al. Researches on protection and restoration of natural forests in China. World Forestry Research, 2022, 35 (1): 82- 87. | |
吕一河, 胡 健, 孙飞翔, 等. 水源涵养与水文调节: 和而不同的陆地生态系统水文服务. 生态学报, 2015, 35 (15): 5191- 5196. | |
Lü Y H, Hu J, Sun F X, et al. Water retention and hydrological regulation: harmony but not the same in terrestrial hydrological ecosystem services. Acta Ecologica Sinica, 2015, 35 (15): 5191- 5196. | |
马姜明, 刘世荣, 史作民, 等. 退化森林生态系统恢复评价研究综述. 生态学报, 2010, 30 (12): 3297- 3303. | |
Ma J M, Liu S R, Shi Z M, et al. A review on restoration evaluation studies of degraded forest ecosystem. Acta Ecologica Sinica, 2010, 30 (12): 3297- 3303. | |
马克明, 傅伯杰. 北京东灵山地区景观格局及破碎化评价. 植物生态学报, 2000, 24 (3): 320- 326. | |
Ma K M, Fu B J. Landscape pattern and fragmentation in Donglingshan montane region. Chinese Journal of Plant Ecology, 2000, 24 (3): 320- 326. | |
马一博, 赵 荣. 天然林资源保护财税支持政策研究. 林业经济问题, 2020, 40 (6): 668- 672. | |
Ma Y B, Zhao R. Research on the finance and taxation policy of protecting natural forest resources. Issues of Forestry Economics, 2020, 40 (6): 668- 672. | |
覃凤飞, 安树青, 卓元午, 等. 景观破碎化对植物种群的影响. 生态学杂志, 2003, 22 (3): 43- 48. | |
Qin F F, An S Q, Zhuo Y W, et al. Effect of landscape fragmentation on plant populations. Chinese Journal of Ecology, 2003, 22 (3): 43- 48. | |
舒清态, 唐守正. 国际森林资源监测的现状与发展趋势. 世界林业研究, 2005, 18 (3): 33- 37.
doi: 10.3969/j.issn.1001-4241.2005.03.008 |
|
Shu Q T, Tang S Z. The status and trend of international forest resources monitoring. World Forestry Research, 2005, 18 (3): 33- 37.
doi: 10.3969/j.issn.1001-4241.2005.03.008 |
|
唐守正. 中国森林资源及其对环境的影响. 生物学通报, 1998, 33 (11): 4- 8. | |
Tang S Z. China's forest resources and their impact on the environment. Bulletin of Biology, 1998, 33 (11): 4- 8. | |
王 文, 诸葛绪霞, 周 炫. 植物截留观测方法综述. 河海大学学报:自然科学版, 2010, 38 (5): 495- 504. | |
Wang W, Zhuge X X, Zhou X. Methods for plant interception measurement. Journal of Hohai University(Natural Sciences), 2010, 38 (5): 495- 504. | |
闫正龙, 高 凡, 何 兵. 3S技术在我国生态环境动态演变研究中的应用进展. 地理信息世界, 2019, 26 (2): 43- 48. | |
Yan Z L, Gao F, He B. Review on the application of 3S technologies in the dynamic evolution of ecological environment in China. Geomatics World, 2019, 26 (2): 43- 48. | |
袁秀锦, 肖文发, 雷静品, 等. 马尾松林分结构对冠层水文效应的影响. 生态学杂志, 2020a, 39 (2): 451- 459. | |
Yuan X J, Xiao W F, Lei J P, et al. Influence of stand structure of Pinua massoniana on canpy hydrological effect. Chinese Journal of Ecology, 2020a, 39 (2): 451- 459. | |
袁秀锦, 肖文发, 雷静品, 等. 三峡库区马尾松林穿透雨和树干茎流空间变异特征. 林业科学, 2020b, 56 (1): 10- 19. | |
Yuan X J, Xiao W F, Lei J P, et al. Spatial variability of throughfall and stemflow in Pinus massoniana plantation in three gorges reservoir area. Scientia Silvae Sinica, 2020b, 56 (1): 10- 19. | |
翟明普, 沈国舫. 2016. 森林培育学. 第3版. 北京: 中国林业出版社. | |
Zhai M P, Shen G F. 2016. Forest cultivation. 3rd edition. Beijing: China Forestry Publishing House. [in Chinese] | |
张晓红, 黄清麟, 张 超. ITTO对原始林、退化原始林、次生林和其他热带森林类别的界定. 世界林业研究, 2009, 22 (3): 30- 35. | |
Zhang X H, Huang Q L, Zhang C. ITTO’s classification and definition on primary forest, degraded primary, secondary forest and other categories of tropical forests. World Forestry Research, 2009, 22 (3): 30- 35. | |
张远东, 赵常明, 刘世荣. 川西亚高山人工云杉林和自然恢复演替系列的林地水文效应. 自然资源学报, 2004, 19 (6): 761- 768.
doi: 10.3321/j.issn:1000-3037.2004.06.011 |
|
Zhang Y D, Zhao C M, Liu S R. Woodland hydrological effects of spruce plantations and natural secondary series in sub-alpine region of western Sichuan. Journal of Natural Resources, 2004, 19 (6): 761- 768.
doi: 10.3321/j.issn:1000-3037.2004.06.011 |
|
赵桂平. 2009. 森林资源结构调整的动态分析及预测研究. 长沙: 中南林业科技大学. | |
Zhao G P. 2009. The dynamic analysis and predictive study of the forest resource structure adjustment. Changsha: Central South University of Forestry & Technology. [in Chinese] | |
赵士洞, 张永民. 生态系统与人类福祉: 千年生态系统评估的成就、贡献和展望. 地球科学进展, 2006, 21 (9): 895- 902. | |
Zhao S D, Zhang Y M. Ecosystems and human well-being: the achievements, contributions and prospects of the millennium ecosystem assessment. Advances in Earth Science, 2006, 21 (9): 895- 902. | |
《中国资源科学百科全书》编辑委员会. 2000. 中国资源科学百科全书. 东营: 石油大学出版社. | |
Editorial Board of the Chinese Encyclopedia of Resource Science. 2000. China encyclopedia of resources science. Dongying: China University of Petroleum Press. [in Chinese] | |
朱教君, 刘足根. 森林干扰生态研究. 应用生态学报, 2004, 15 (10): 1703- 1710. | |
Zhu J J, Liu Z G. A review on disturbance ecology of forest. Chinese Journal of Applied Ecology, 2004, 15 (10): 1703- 1710. | |
朱万泽. 成熟森林固碳研究进展. 林业科学, 2020, 56 (3): 117- 126. | |
Zhu W Z. Advances in the carbon sequestration of mature forests. Scientia Silvae Sinicae, 2020, 56 (3): 117- 126. | |
Andreasen J K, O’Neill R V, Noss R, et al. Considerations for the development of a terrestrial index of ecological integrity. Ecological Indicators, 2001, 1 (1): 21- 35.
doi: 10.1016/S1470-160X(01)00007-3 |
|
Barlow J, Gardner T A, Araujo I S, et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (47): 18555- 18560. | |
Barredo J I, Brailescu C, Teller A, et al. 2021. Mapping and assessment of primary and old-growth forests in Europe. Luxembourg: Publications Office of the European Union. | |
Bernier P Y, Paré D, Stinson G, et al. Moving beyond the concept of “primary forest” as a metric of forest environment quality. Ecological Applications, 2017, 27 (2): 349- 354.
doi: 10.1002/eap.1477 |
|
Betts M G, Phalan B, Frey S J K, et al. Old-growth forests buffer climate-sensitive bird populations from warming. Diversity and Distributions, 2018, 24 (4): 439- 447.
doi: 10.1111/ddi.12688 |
|
Bongaarts J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental science-policy platform on biodiversity and ecosystem services. Population and Development Review, 2019, 45 (3): 680- 681.
doi: 10.1111/padr.12283 |
|
Bosch J M, Hewlett J D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 1982, 55 (1−4): 3- 23. | |
Bremer L L, Farley K A. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodiversity and Conservation, 2010, 19 (14): 3893- 3915.
doi: 10.1007/s10531-010-9936-4 |
|
Brienen R J W, Phillips O L, Feldpausch T R, et al. Long-term decline of the Amazon carbon sink. Nature, 2015, 519 (7543): 344- 348.
doi: 10.1038/nature14283 |
|
Buchwald E. 2005. A hierarchical terminology for more or less natural forests in relation to sustainable management and biodiversity conservation// Food and Agriculture Organization of the United Nations. Proceedings. Third expert meeting on harmonizing forest-related definitions, Rome, Italy. 11−19. | |
Caterino M S, Langton-Myers S S. Long-term population persistence of flightless weevils (Eurhoptus pyriformis) across old-and second-growth forests patches in southern Appalachi. BMC Evolutionary Biology, 2018, 18 (1): 165.
doi: 10.1186/s12862-018-1278-y |
|
Chazdon R L, Harvey C A, Komar O, et al. Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica, 2009, 41 (2): 142- 153.
doi: 10.1111/j.1744-7429.2008.00471.x |
|
Condit R S, Ashton M S, Balslev H, et al. Tropical tree α-diversity: results from a worldwide network of large plots. Biologiske Skrifte, 2005, 55, 565- 582. | |
Eckelt A, Müller J, Bense U, et al. “Primeval forest relict beetles” of central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. Journal of Insect Conservation, 2018, 22 (1): 15- 28. | |
Ford S E, Keeton W S. Enhanced carbon storage through management for old-growth characteristics in northern hardwood-conifer forests. Ecosphere, 2017, 8 (4): e01721. | |
Gibson L, Lee T M, Koh L P, et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 2011, 478 (7369): 378- 381.
doi: 10.1038/nature10425 |
|
Harmon M E, Bible K, Ryan M G, et al. Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem. Ecosystems, 2004, 7 (5): 498- 512. | |
Hua F Y, Bruijnzeel L A, Meli P, et al. The biodiversity and ecosystem service contributions and trade-offs of contrasting forest restoration approaches. Science, 2022, 376 (6596): 839- 844. | |
Hutyra L R, Munger J W, Saleska S R, et al. 2007. Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. Journal of Geophysical Research: Biogeosciences, 112: (G03008). | |
Kaufmann S, Hauck M, Leuschner C. Comparing the plant diversity of paired beech primeval and production forests: management reduces cryptogam, but not vascular plant species richness. Forest Ecology and Management, 2017, 400, 58- 67.
doi: 10.1016/j.foreco.2017.05.043 |
|
Kim H, McComb B C, Frey S J K, et al. Forest microclimate and composition mediate long-term trends of breeding bird populations. Global Change Biology, 2022, 28 (21): 6180- 6193.
doi: 10.1111/gcb.16353 |
|
Kormos C F, Mackey B, DellaSala D A, et al. 2018. Primary forests:definition, status and future prospects for global conservation// GoldsteinM I, DellaSala D A. Encyclopedia of the anthropocene. Amsterdam, Netherland: Elsevier, 31−41. | |
Kormos C F, Mittermeier R A, Jaeger T, et al. 2016. A geography of hope: saving the last primary forests. British Columbia: Earth in Focus. | |
Laurance W F, Nascimento H E, Laurance S G, et al. Rain forest fragmentation and the proliferation of successional trees. Ecology, 2006, 87 (2): 469- 482.
doi: 10.1890/05-0064 |
|
Laurance W F, Peletier-Jellema A, Geenen B, et al. Reducing the global environmental impacts of rapid infrastructure expansion. Current Biology, 2015, 25 (7): R259- R262.
doi: 10.1016/j.cub.2015.02.050 |
|
Lewis S L, Lopez-Gonzalez G, Sonké B, et al. Increasing carbon storage in intact African tropical forests. Nature, 2009, 457 (7232): 1003- 1006.
doi: 10.1038/nature07771 |
|
Lutz J A, Furniss T J, Johnson D J, et al. Global importance of large-diameter trees. Global Ecology and Biogeography, 2018, 27 (7): 849- 864.
doi: 10.1111/geb.12747 |
|
Luyssaert S, Schulze E D, Börner A, et al. Old-growth forests as global carbon sinks. Nature, 2008, 455 (7210): 213- 215.
doi: 10.1038/nature07276 |
|
MacDicken K G, Sola P, Hall J E, et al. Global progress toward sustainable forest management. Forest Ecology and Management, 2015, 352, 47- 56.
doi: 10.1016/j.foreco.2015.02.005 |
|
Mackey B, DellaSala D A, Kormos C, et al. Policy options for the world's primary forests in multilateral environmental agreements. Conservation Letters, 2015, 8 (2): 139- 147.
doi: 10.1111/conl.12120 |
|
Margono B A, Potapov P V, Turubanova S, et al. Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change, 2014, 4 (8): 730- 735.
doi: 10.1038/nclimate2277 |
|
Margono B A, Turubanova S, Zhuravleva I, et al. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environmental Research Letters, 2012, 7 (3): 034010.
doi: 10.1088/1748-9326/7/3/034010 |
|
Morales-Hidalgo D, Oswalt S N, Somanathan E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecology and Management, 2015, 352, 68- 77.
doi: 10.1016/j.foreco.2015.06.011 |
|
Müller F, Hoffmann-Kroll R, Wiggering H. Indicating ecosystem integrity-theoretical concepts and environmental requirements. Ecological Modelling, 2000, 130 (1/2/3): 13- 23. | |
Mikoláš M, Ujházy K, Jasík M, et al. Primary forest distribution and representation in a Central European landscape: results of a large-scale field-based census. Forest Ecology and Management, 2019, 449, 117466.
doi: 10.1016/j.foreco.2019.117466 |
|
Newbold T, Hudson L N, Hill S L L, et al. Global effects of land use on local terrestrial biodiversity. Nature, 2015, 520 (7545): 45- 50.
doi: 10.1038/nature14324 |
|
Niemelä J. 1997. Invertebrates and boreal forest management . Conservation Biology, 11(3): 601-610. | |
Odum E P. The strategy of ecosystem development: an understanding of ecological succession provides a basis for resolving man’s conflict with nature. Science, 1969, 164 (3877): 262- 270.
doi: 10.1126/science.164.3877.262 |
|
Paillet Y, Pernot C, Boulanger V, et al. Quantifying the recovery of old-growth attributes in forest reserves: a first reference for France. Forest Ecology and Management, 2015, 346, 51- 64.
doi: 10.1016/j.foreco.2015.02.037 |
|
Pecl G T, Araújo M B, Bell J D, et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science, 2017, 355 (6332): eaai9214.
doi: 10.1126/science.aai9214 |
|
Peterken G F. 1996. Natural woodland: ecology and conservation in northern temperate regions. Cambridge: Cambridge University Press. | |
Phillips O L, Lewis S L, Baker T R, et al. The changing Amazon forest. Philosophical Transactions of the Royal Society B:Biological Sciences, 2008, 363 (1498): 1819- 1827.
doi: 10.1098/rstb.2007.0033 |
|
Poker J, MacDicken K. 2016. Tropical forest resources: facts and tables. //Pancel L, Köhl M. Tropical forestry handbook. Berlin, Germany: Springer. | |
Potapov P, Hansen M C, Laestadius L, et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Science Advances, 2017, 3 (1): e1600821.
doi: 10.1126/sciadv.1600821 |
|
Potapov P, Yaroshenko A, Turubanova S, et al. Mapping the world’s intact forest landscapes by remote sensing. Ecology and Society, 2008, 13 (2): art51.
doi: 10.5751/ES-02670-130251 |
|
Román-Palacios C, Wiens J J. Recent responses to climate change reveal the drivers of species extinction and survival. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (8): 4211- 4217. | |
Sabatini F M, Bluhm H, Kun Z, et al. 2021. European primary forest database v2. 0. Scientific Data, 8(1): 220. | |
Sabatini F M, Burrascano S, Keeton W S, et al. 2018. Where are Europe’s last primary forests? Diversity and Distributions, 24(10): 1426−1439. | |
Sabatini F M, Keeton W S, Lindner M, et al. Protection gaps and restoration opportunities for primary forests in Europe. Diversity and Distributions, 2020, 26 (12): 1646- 1662.
doi: 10.1111/ddi.13158 |
|
Salati E, Dall'Olio A, Matsui E, et al. Recycling of water in the Amazon basin: an isotopic study. Water Resources Research, 1979, 15 (5): 1250- 1258.
doi: 10.1029/WR015i005p01250 |
|
Seedre M, Kopáček J, Janda P, et al. Carbon pools in a montane old-growth Norway spruce ecosystem in Bohemian forest: effects of stand age and elevation. Forest Ecology and Management, 2015, 346, 106- 113.
doi: 10.1016/j.foreco.2015.02.034 |
|
Shu S M, Zhu W Z, Wang W Z, et al. Effects of tree size heterogeneity on carbon sink in old forests. Forest Ecology and Management, 2019, 432, 637- 648.
doi: 10.1016/j.foreco.2018.09.023 |
|
Tan Z H, Zhang Y P, Schaefer D, et al. An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmospheric Environment, 2011, 45 (8): 1548- 1554.
doi: 10.1016/j.atmosenv.2010.12.041 |
|
Taylor A R, Seedre M, Brassard B W, et al. Decline in net ecosystem productivity following canopy transition to late-succession forests. Ecosystems, 2014a, 17 (5): 778- 791.
doi: 10.1007/s10021-014-9759-3 |
|
Taylor C, McCarthy M A, Lindenmayer D B. Nonlinear effects of stand age on fire severity. Conservation Letters, 2014b, 7 (4): 355- 370.
doi: 10.1111/conl.12122 |
|
Vandekerkhove K, De Keersmaeker L, Menke N, et al. When nature takes over from man: dead wood accumulation in previously managed oak and beech woodlands in north-western and central Europe. Forest Ecology and Management, 2009, 258 (4): 425- 435.
doi: 10.1016/j.foreco.2009.01.055 |
|
Verma M. Framework for forest resource accounting: factoring in the intangibles. International Forestry Review, 2008, 10 (2): 362- 375.
doi: 10.1505/ifor.10.2.362 |
|
Vieira S, Trumbore S, Camargo P B, et al. Slow growth rates of Amazonian trees: consequences for carbon cycling. Proceedings of the National Academy of Sciences, 2005, 102 (51): 18502- 18507.
doi: 10.1073/pnas.0505966102 |
|
Wirth C. 2009. Old-growth forests: function, fate and value—a synthesis// Wirth C, Gleixner G, Heimann M. Old-growth forests: function, fate and value. Berlin: Springer, 465−491. | |
Wolf C, Bell D M, Kim H, et al. Temporal consistency of undercanopy thermal refugia in old-growth forest. Agricultural and Forest Meteorology, 2021, 307, 108520.
doi: 10.1016/j.agrformet.2021.108520 |
|
Wolfslehner B, Pülzl H, Kleinschmit D, et al. 2020. European forest governance post-2020. Joensuu: European Forest Institute. | |
Woodley S. 2020. Monitoring and measuring ecosystem integrity in Canadian National Parks// Woodley S, Kay J. Ecological integrity and the management of ecosystems. Boca Raton: CRC Press, 155−176. | |
Xing A J, Du E Z, Shen H H, et al. Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecology Letters, 2022, 25 (1): 77- 88.
doi: 10.1111/ele.13906 |
|
Yan J H, Zhang Y P, Yu G R, et al. Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China. Agricultural and Forest Meteorology, 2013, 182/183, 257- 265.
doi: 10.1016/j.agrformet.2013.03.002 |
|
Zhou G Y, Liu S G, Li Z A, et al. Old-growth forests can accumulate carbon in soils. Science, 2006, 314 (5804): 1417.
doi: 10.1126/science.1130168 |
|
Zhou L, Dai L M, Wang S X, et al. Changes in carbon density for three old-growth forests on Changbai Mountain, Northeast China: 1981–2010. Annals of Forest Science, 2011, 68 (5): 953- 958.
doi: 10.1007/s13595-011-0101-3 |
[1] | 沈琛琛,肖文发,朱建华,曾立雄,陈吉臻,黄志霖. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J]. 林业科学, 2024, 60(3): 65-77. |
[2] | 龙时胜, 曾思齐, 杨盛扬. 基于改进林分密度指数的栎类天然林最大密度线[J]. 林业科学, 2023, 59(9): 13-22. |
[3] | 何静,李新建,朱晋梅,朱光玉. 基于最粗优势木胸径生长的湖南栎类天然林立地质量评价模型[J]. 林业科学, 2022, 58(8): 89-98. |
[4] | 王金池,黄清麟,严铭海,黄如楚,郑群瑞. 由巨桉人工林转型的13年生青冈栎天然林特征[J]. 林业科学, 2021, 57(9): 13-20. |
[5] | 许塔艳,全文选,李朝婵,潘延楠,谢利娟,郝江涛,高永道. 野生杜鹃林土壤低分子量有机酸分布特征[J]. 林业科学, 2021, 57(8): 24-32. |
[6] | 杨璐,汪金松,赵博,赵秀海. 长期施氮对暖温带油松林土壤呼吸及其组分的影响[J]. 林业科学, 2021, 57(1): 1-11. |
[7] | 王金池,黄清麟,严铭海,黄如楚,郑群瑞. 由邓恩桉人工林转型的7年生丝栗栲天然林特征[J]. 林业科学, 2021, 57(1): 12-19. |
[8] | 张岗岗,惠刚盈. 基于累加性和均衡性的林分质量综合评价方法[J]. 林业科学, 2021, 57(1): 77-84. |
[9] | 赵阳,曹秀文,李波,齐瑞,曹家豪,陈学龙,杨萌萌,陈林生. 甘肃南部林区4种天然林种群结构特征[J]. 林业科学, 2020, 56(9): 21-29. |
[10] | 祝乐,许晨阳,耿增超,刘莉丽,侯琳,王志康,王强,陈树兰,李倩倩. 秦岭3种天然林细根分布特征及其与土壤理化性质的关系[J]. 林业科学, 2020, 56(2): 24-31. |
[11] | 邹玉友,李金秋,田国双. 基于可行能力理论的国有林区主观福祉影响因素实证分析—全面停止天然林商业性采伐的视角[J]. 林业科学, 2020, 56(10): 154-164. |
[12] | 张雷, 孙鹏森, 刘世荣. 川西亚高山森林不同恢复阶段生长季蒸腾特征[J]. 林业科学, 2020, 56(1): 1-9. |
[13] | 王志康, 许晨阳, 耿增超, 刘莉丽, 侯琳, 杜璨, 王强, 吕东唯. 基于扣除根系体积新方法的秦岭辛家山2种林分土壤有机碳密度特征[J]. 林业科学, 2019, 55(6): 133-141. |
[14] | 高鑫, 周凡, 庄寿增, 周永东. 纤维饱和点概念的演变、测试方法及其应用[J]. 林业科学, 2019, 55(3): 149-159. |
[15] | 王金池,黄清麟,马志波,黄如楚,郑群瑞. 永安市半天然马尾松阔叶混交林的树种组成与多样性[J]. 林业科学, 2019, 55(11): 19-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||