 
		林业科学 ›› 2021, Vol. 57 ›› Issue (1): 77-84.doi: 10.11707/j.1001-7488.20210108
张岗岗1,2,惠刚盈1,*
收稿日期:2019-02-25
									
				
									
				
									
				
											出版日期:2021-01-25
									
				
											发布日期:2021-03-10
									
			通讯作者:
					惠刚盈
												基金资助:Ganggang Zhang1,2,Gangying Hui1,*
Received:2019-02-25
									
				
									
				
									
				
											Online:2021-01-25
									
				
											Published:2021-03-10
									
			Contact:
					Gangying Hui   
												摘要:
目的: 林分质量综合评价是森林经营决策的前提和关键。为解决林分质量评价中偏重强调累加性可能导致的失衡发展问题,基于等周定理和等圆理论试图提出均衡性测度指标并构建综合评价方法,为林分质量问题诊断及精准提升提供参考。方法: 以甘肃小陇山林区锐齿栎天然林(a和b)、吉林蛟河林区阔叶红松林(c和d)和模拟天然林(e和f)的林分质量综合评价为例,先从林分结构和活力2方面筛选出10个评价指标,对各指标进行无量纲化和非同向性处理,再以单位圆中扇形半径和圆心角分别代表指标取值和权重大小,借助闭合图形面积特征量测度林分质量累加性(ωi1),分别基于面积和弧长特征量关系及其等周定理构建αi2和βi2、基于等圆面积周长关系提出γi2测度各评价指标间的均衡性(ωi2),最后以累加性相等林分(c和e、d和f)验证3个均衡性指标的有效性,并采用几何平均值法构造综合评价函数(Fi)比较不同现实林分质量优劣。结果: 阔叶红松林c和d的αi2、βi2、γi2取值小于与其累加性取值相等的林分e和f,且3个均衡性指标评价结果趋势一致。4个现实林分质量的累加性、均衡性及综合评价结果优劣均表现为d>a>c>b,阔叶红松林d质量最优,其次是林分a和c,锐齿栎天然林b最差。结论: 改进单位圆以扇形半径和圆心角分别代表指标取值和权重大小,ωi1可量化描述林分质量累加性优劣,现有βi2与新提出的αi2和γi2均能有效测度林分质量各评价指标间的均衡性,且评价结果具有较强一致性,兼顾累加性和均衡性的林分质量综合评价方法更为全面客观,其评价结果对林分质量问题诊断和森林经营决策具有重要启示作用,可有效提升林分整体质量并促进其均衡发展。
中图分类号:
张岗岗,惠刚盈. 基于累加性和均衡性的林分质量综合评价方法[J]. 林业科学, 2021, 57(1): 77-84.
Ganggang Zhang,Gangying Hui. Comprehensive Evaluation Method of Forest Quality Based on the Accumulation and Homogeneity[J]. Scientia Silvae Sinicae, 2021, 57(1): 77-84.
 
												
												表1
样地概况"
| 林分 Stand | 坡度 Slope/(°) | 坡向 Aspect | 海拔 Elevation/m | 郁闭度 Canopy density | 断面积 Basal area/(m2·hm-2) | 平均胸径 Mean DBH/cm | 密度 Density/(trees·hm-2) | 
| a | 33 | 西北Northwest | 1 720 | 0.8 | 27.9 | 19.5 | 933 | 
| b | 35 | 西北Northwest | 1 700 | 0.8 | 25.3 | 19.6 | 842 | 
| c | 17 | 西北Northwest | 660 | 0.8 | 31.3 | 18.1 | 1 186 | 
| d | 8 | 西北Northwest | 600 | 0.8 | 31.9 | 19.6 | 970 | 
 
												
												表2
天然林林分质量各指标取值"
| 林分 Stand | 林分结构Structure B1 | 活力Vigor B2 | |||||||||
| 垂直结构 Vertical structure C1 | 水平结构 Horizontal structure C2 | 直径分布 DBH distribution C3 | 树种多样性 Species diversity C4 | 树种组成 Species composition C5 | 林分密度 Stand density C6 | 林分长势 Growth status C7 | 顶级种竞争 Climax species competition C8 | 林分更新 Regeneration C9 | 林木健康 Forest health C10 | ||
| a | 1.9/0.5 | 0.492/1 | 倒J形Reverse J-shape/1 | 0.593 | 2/0.5 | 0.633/0 | 0.638 | 0.537 | 8 100/1 | 96.5%/1 | |
| b | 1.9/0.5 | 0.533/0 | 倒J形Reverse J-shape/1 | 0.584 | 3/1 | 0.554/0 | 0.562 | 0.401 | 7 480/1 | 87.1%/0 | |
| c | 2.2/0.5 | 0.499/1 | 倒J形Reverse J-shape/1 | 0.549 | 2/0.5 | 0.660/0 | 0.683 | 0.314 | 2 300/0.5 | 90.9%/1 | |
| d | 2.5/1 | 0.491/1 | 倒J形Reverse J-shape/1 | 0.625 | 3/1 | 0.643/0 | 0.688 | 0.484 | 720/0.5 | 92.9%/1 | |
| e | 2.2/0.5 | 0.516/1 | 多峰形Multimodal/ 0.5 | 0.426 | 3/1 | 0.8/0.5 | 0.518 | 0.414 | 2 100/0.5 | 92.3%/1 | |
| f | 2.0/0.5 | 0.460/0.5 | 多峰形Multimodal/0.5 | 0.355 | 2/0.5 | 1.2/0.5 | 0.461 | 0.418 | 1 800/0.5 | 94.6%/1 | |
| 等权重 Equal weight | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | |
| 不等权重 Unequal weight | 0.025 | 0.121 | 0.025 | 0.011 | 0.033 | 0.632 | 0.006 | 0.008 | 0.034 | 0.105 | |
 
												
												表3
等权重下不同天然林质量特征值"
| 林分Stand | ${\rm{\bar I}}$i | ωi1 | αi2 | βi2 | γi2 | Fα | Fβ | Fγ | 排序Rank | 
| a | 0.677 | 0.555 | 0.909 | 0.826 | 0.857 | 0.710 | 0.677 | 0.690 | 2 | 
| b | 0.505 | 0.407 | 0.791 | 0.626 | 0.699 | 0.567 | 0.505 | 0.533 | 4 | 
| c | 0.605 | 0.462 | 0.890 | 0.792 | 0.841 | 0.641 | 0.605 | 0.623 | 3 | 
| d | 0.730 | 0.635 | 0.916 | 0.839 | 0.860 | 0.762 | 0.730 | 0.739 | 1 | 
| e | 0.636 | 0.462 | 0.935 | 0.875 | 0.909 | 0.657 | 0.636 | 0.648 | — | 
 
												
												表4
不等权重下不同天然林质量特征值"
| 林分Stand | ${\rm{\bar I}}$i | ωi1 | αi2 | βi2 | γi2 | Fα | Fβ | Fγ | 排序Rank | 
| a | 0.677 | 0.308 | 0.592 | 0.350 | 0.739 | 0.427 | 0.329 | 0.477 | 2 | 
| b | 0.505 | 0.105 | 0.361 | 0.131 | 0.609 | 0.195 | 0.117 | 0.253 | 4 | 
| c | 0.605 | 0.281 | 0.584 | 0.341 | 0.697 | 0.405 | 0.310 | 0.443 | 3 | 
| d | 0.730 | 0.327 | 0.596 | 0.356 | 0.771 | 0.441 | 0.341 | 0.502 | 1 | 
| f | 0.523 | 0.327 | 0.963 | 0.926 | 0.930 | 0.561 | 0.550 | 0.551 | — | 
| 安慧君, 王硕, 常峥, 等.  森林质量模糊评价模型中赋权方法的选择——以红花尔基为例. 西北林学院学报, 2018, 33 (5): 167- 171. doi: 10.3969/j.issn.1001-7461.2018.05.26 | |
| An H J ,  Wang S ,  Chang Z , et al.  Method of empowerment selection in the forest quality fuzzy evaluation model: a case study of Honghuaerji. Journal of Northwest Forestry University, 2018, 33 (5): 167- 171. doi: 10.3969/j.issn.1001-7461.2018.05.26 | |
| 党普兴, 侯晓巍, 惠刚盈, 等.  区域森林资源质量综合评价指标体系和评价方法. 林业科学研究, 2008, 21 (1): 84- 90. doi: 10.3321/j.issn:1001-1498.2008.01.016 | |
| Dang P X ,  Hou X W ,  Hui G Y , et al.  Evaluation indicator system and evaluation method of regional forest resource quality. Forest Research, 2008, 21 (1): 84- 90. doi: 10.3321/j.issn:1001-1498.2008.01.016 | |
| 邓海燕, 莫晓勇. 质量精准提升综述. 桉树科技, 2017, 34 (2): 41- 48. | |
| Deng H Y , Mo X Y . Improvement of forest quality through precision forestry. Eucalypt Science & Technology, 2017, 34 (2): 41- 48. | |
| 杜锁房. 2006. 面向实施全程的ERP评价指标体系建立研究. 天津: 河北工业大学硕士学位论文. | |
| Du S F. 2006. Study on the establishment of appraisal indicators system oriented to whole ERP implementation process. Tianjin: MS thesis of Hebei University of Technology.[in Chinese] | |
| 郭亚军, 钟田丽.  兼顾"功能性"与"均衡性"的综合评价方法及应用. 中国软科学, 2001, 32 (6): 104- 106. doi: 10.3969/j.issn.1002-9753.2001.06.025 | |
| Guo Y J ,  Zhong T L .  Multiple attribute evaluation method taking account of functionality and proportionality and its application. China Soft Science, 2001, 32 (6): 104- 106. doi: 10.3969/j.issn.1002-9753.2001.06.025 | |
| 惠刚盈, 赵中华, 胡艳波. 结构化森林经营技术指南. 北京: 中国林业出版社, 2010. | |
| Hui G Y , Zhao Z H , Hu Y B . A guide to structure-based forest management. Beijing: China Forestry Publishing House, 2010. | |
| 惠刚盈, 张弓乔, 赵中华, 等. 天然混交林最优林分状态的π值法则. 林业科学, 2016a, 52 (5): 1- 8. | |
| Hui G Y , Zhang G Q , Zhao Z H , et al. A new rule of π value of natural mixed forest optimal stand state. Scientia Silvae Sinicae, 2016a, 52 (5): 1- 8. | |
| 惠刚盈, 赵中华, 张弓乔. 基于林分状态的天然林经营措施优先性研究. 北京林业大学学报, 2016b, 38 (1): 1- 10. | |
| Hui G Y , Zhao Z H , Zhang G Q . Priority of management measures for natural forests based on the stand state. Journal of Beijing Forestry University, 2016b, 38 (1): 1- 10. | |
| 李录林, 刘文桢, 赵中华, 等. 应用π值法则评价小陇山林区林分状态. 林业科学研究, 2018, 31 (6): 1- 6. | |
| Li L L , Liu W Z , Zhao Z H , et al. The application of π-value rule of stand status evaluation in Xiaolongshan forest region. Forest Research, 2018, 31 (6): 1- 6. | |
| 吝涛, 薛雄志, 卢昌义.  "网状"生态指标体系构建及其指标权重分配方法. 生态学报, 2007, 27 (1): 235- 241. doi: 10.3321/j.issn:1000-0933.2007.01.028 | |
| Lin T ,  Xue X Z ,  Lu C Y .  Methods for developing a net shape ecological indicator system and assigning rational weights to the indicators. Acta Ecologica Sinica, 2007, 27 (1): 235- 241. doi: 10.3321/j.issn:1000-0933.2007.01.028 | |
| 漆艳茹. 2010. 确定指标权重的方法及应用研究. 沈阳: 东北大学硕士学位论文. | |
| Qi Y R. 2010. The method of determining index weight and its application research. Shenyang: MS thesis of Northeast University.[in Chinese] | |
| 曲松. 2008. 帽儿山实验林场森林质量评价的研究. 哈尔滨: 东北林业大学硕士学位论文. | |
| Qu S. 2008. Study on the forest quality evaluation of Mao'ershan experimental farm forest. Harbin: MS thesis of Northeast Forestry University.[in Chinese] | |
| 王得祥, 徐钊, 柴宗政, 等. 秦岭山地森林健康经营理论与实践. 杨凌: 西北农林科技大学出版社, 2015. | |
| Wang D X , Xu Z , Chai Z Z , et al. Theory and practice of forest health management in Qinling Mountains. Yangling: Northwest A & F University Press, 2015. | |
| 王乃江, 张文辉, 同金霞, 等. 黄土高原蔡家川林场森林质量评价. 林业科学, 2010, 46 (9): 7- 13. | |
| Wang N J , Zhang W H , Tong J X , et al. Forest quality evaluation in Caijiachuan state forest station on Loess Plateau. Scientia Silvae Sinicae, 2010, 46 (9): 7- 13. | |
| 张会儒, 雷相东. 典型森林类型健康经营技术研究. 北京: 中国林业出版社, 2014. | |
| Zhang H R , Lei X D . Research on health management technology for typical forest types. Beijing: China Forestry Publishing House, 2014. | |
| 赵惠勋, 周晓峰, 王义弘, 等.  森林质量评价标准和评价指标. 东北林业大学学报, 2000, 28 (5): 58- 61. doi: 10.3969/j.issn.1000-5382.2000.05.014 | |
| Zhao H X ,  Zhou X F ,  Wang Y H , et al.  Quality of forest evaluation standard and evaluation target. Journal of Northeast Forestry University, 2000, 28 (5): 58- 61. doi: 10.3969/j.issn.1000-5382.2000.05.014 | |
| Bauhus J, Pyttel P. 2015. Managed forests//Peh K S H, Corlett R T, Bergeron Y. Routledge handbook of forest ecology. Routledge: Oxon, UK, 75-90. | |
| Coulter E D , Sessions J , Wing M G . Scheduling forest road maintenance using the analytic hierarchy process and heuristics. Silva Fennica, 2015, 40 (1): 143- 160. | |
| Dudley N, Schlaepfer R, Jackson W, et al. 2006. Forest quality: assessing forests at a landscape scale. London: Sterling, VA, Earthscan. | |
| Frank S ,  Fürst C ,  Pietzsch F .  Cross-sectoral resource management: How forest management alternatives affect the provision of biomass and other ecosystem services. Forests, 2015, 6, 533- 560. doi: 10.3390/f6030533 | |
| Gorgij A D ,  Kisi O ,  Moghaddam A A , et al.  Groundwater quality ranking for drinking purposes, using the entropy method and the spatial autocorrelation index. Environmental Earth Sciences, 2017, 76 (7): 269. doi: 10.1007/s12665-017-6589-6 | |
| Guey-Shin S ,  Bai-You C ,  Chi-Ting C , et al.  Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. International Journal of Environmental Research and Public Health, 2011, 8 (4): 1084- 1109. doi: 10.3390/ijerph8041084 | |
| Hooker H D .  Liebig's law of the minimum in relation to general biological problems. Science, 1917, 46 (1183): 197- 204. doi: 10.1126/science.46.1183.197 | |
| Jiang X ,  Lu W X ,  Zhao H Q , et al.  Quantitative evaluation of mining geo-environmental quality in northeast China: comprehensive index method and support vector machine models. Environmental Earth Sciences, 2015, 73 (12): 7945- 7955. doi: 10.1007/s12665-014-3953-7 | |
| Kesavan S . The Isoperimetric inequality. Resonance, 2002, 7, 8- 18. | |
| Li C B ,  Qi J G ,  Wang S B , et al.  Spatiotemporal characteristics of alpine snow and ice melt under a changing regional climate: a case study in northwest China. Quaternary International, 2015, 358, 126- 136. doi: 10.1016/j.quaint.2014.11.016 | |
| Mendoza G A ,  Dalton W J .  Multi-stakeholder assessment of forest sustainability: Multi-criteria analysis and the case of the Ontario forest assessment system. The Forestry Chronicle, 2005, 81 (2): 222- 228. doi: 10.5558/tfc81222-2 | |
| Nyland R D . Selection system in northern hardwoods. Journal of Forestry-Washington, 1998, 96 (7): 18- 21. | |
| Ochoa-Gaona S ,  Kampichler C ,  Jong B H J D , et al.  A multi-criterion index for the evaluation of local tropical forest conditions in Mexico. Forest Ecology and Management, 2010, 260 (5): 618- 627. doi: 10.1016/j.foreco.2010.05.018 | |
| Osserman R .  The isoperimetric inequality. Bulletin of the American Mathematical Society, 1978, 84 (6): 1182- 1238. doi: 10.1090/S0002-9904-1978-14553-4 | |
| Saary M J .  Radar plots: a useful way for presenting multivariate health care data. Journal of Clinical Epidemiology, 2008, 61 (4): 311- 317. doi: 10.1016/j.jclinepi.2007.04.021 | |
| Stafoggia M ,  Lallo A ,  Fusco D , et al.  Spie charts, target plots, and radar plots for displaying comparative outcomes of health care. Journal of Clinical Epidemiology, 2011, 64 (7): 770- 778. doi: 10.1016/j.jclinepi.2010.10.009 | |
| Thivierge M N ,  Parent D ,  Bélanger V , et al.  Environmental sustainability indicators for cash-crop farms in Quebec, Canada: a participatory approach. Ecological Indicators, 2014, 45, 677- 686. doi: 10.1016/j.ecolind.2014.05.024 | |
| Thomas P A ,  Mukassabi T A .  Biological flora of the British Isles: Ruscus aculeatus. Journal of Ecology, 2014, 102 (4): 1083- 1100. doi: 10.1111/1365-2745.12265 | |
| Valls-Donderis P ,  Vallés-Planells M ,  Galiana F .  Short communication: AHP for indicators of sustainable forestry under Mediterranean conditions. Forest Systems, 2017, 26 (2): 1- 5. doi: 10.5424/fs/2017262-12277 | |
| Wiréhn L , Danielsson A , Neset T S . Assessment of composite index methods for agricultural vulnerability to climate change. Journal of Environmental Management, 2015, 156, 70- 80. | |
| Yang W C ,  Xu K ,  Lian J J , et al.  Integrated flood vulnerability assessment approach based on TOPSIS and Shannon entropy methods. Ecological Indicators, 2018, 89, 269- 280. doi: 10.1016/j.ecolind.2018.02.015 | |
| Zhang G G ,  Hui G Y ,  Zhang G Q , et al.  A novel comprehensive evaluation method of forest state based on unit circle. Forests, 2018, 10 (1): 1- 9. doi: 10.3390/f10010001 | 
| [1] | 刘生冬, 史佳琦, 董诗睿, 吴新毅, 孟庆繁, 李燕, 赵红蕊, 靳英华. 吉林蛟河不同林分腐木甲虫(鞘翅目)多样性分析[J]. 林业科学, 2021, 57(1): 121-130. | 
| [2] | 王启繁,沈隽,曾彬,王慧玉,曹田雨,董华君. 漆饰贴面刨花板VOCs及气味释放[J]. 林业科学, 2020, 56(5): 130-142. | 
| [3] | 董楠,张红,张春晖. 陕西省国家森林公园游客满意度——以太白山、太平和王顺山森林公园为例[J]. 林业科学, 2020, 56(3): 156-163. | 
| [4] | 刘济铭, 陈仲, 孙操稳, 王连春, 何秋阳, 戴腾飞, 姚娜, 高世轮, 赵国春, 史双龙, 贾黎明, 翁学煌. 无患子属种质资源种实性状变异及综合评价[J]. 林业科学, 2019, 55(6): 44-54. | 
| [5] | 姚杰, 张春雨, 赵秀海. 吉林蛟河阔叶红松林树种空间分布格局及其种间关联性[J]. 林业科学, 2018, 54(8): 23-31. | 
| [6] | 刘生冬, 孟昕, 孟庆繁, 李燕, 赵红蕊, 高文韬. 阔叶红松林不同林分对地表甲虫群落的影响[J]. 林业科学, 2018, 54(2): 110-118. | 
| [7] | 刘生冬, 孟昕, 孟庆繁, 韩云鹤, 李燕, 赵红蕊. 吉林蛟河阔叶红松林中甲虫(鞘翅目)群落时间动态分析[J]. 林业科学, 2018, 54(10): 80-88. | 
| [8] | 张玲, 张东来, 毛子军. 小兴安岭阔叶红松林不同演替系列土壤有机碳及各组分特征[J]. 林业科学, 2017, 53(9): 11-17. | 
| [9] | 罗青红, 宁虎森, 何苗, 吉小敏, 雷春英. 5种沙地灌木对干旱胁迫的生理生态响应[J]. 林业科学, 2017, 53(11): 29-42. | 
| [10] | 林文树, 穆丹, 王丽平, 邵立郡, 吴金卓. 针阔混交林不同演替阶段表层土壤理化性质与优势林木生长的相关性[J]. 林业科学, 2016, 52(5): 17-25. | 
| [11] | 刘生冬, 孟庆繁, 高文韬, 李燕. 张广才岭南段阔叶红松林天牛科昆虫物种多样性与成虫出现期时间动态[J]. 林业科学, 2016, 52(2): 74-81. | 
| [12] | 郭学民, 刘建珍, 翟江涛, 肖啸, 吕亚媚, 李丹丹, 裴士美, 张立彬. 16个品种桃叶片解剖结构与树干抗寒性的关系[J]. 林业科学, 2015, 51(8): 33-43. | 
| [13] | 张连刚, 支玲, 张静, 谢彦明. 林业专业合作组织满意度的多层次模糊综合评价[J]. 林业科学, 2014, 50(8): 154-161. | 
| [14] | 李晓宇, 杨成超, 彭建东, 杨志岩, 张妍. 杨树苗期抗寒性综合评价体系的构建[J]. 林业科学, 2014, 50(7): 44-51. | 
| [15] | 黄秦军, 苏晓华, 王胜东, 蔄胜军, 杨志岩, 沈应柏. 杨树新品种‘渤丰1号’杨和‘渤丰2号’杨的综合评价[J]. 林业科学, 2014, 50(5): 75-81. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||