林业科学 ›› 2024, Vol. 60 ›› Issue (4): 157-172.doi: 10.11707/j.1001-7488.LYKX20230206
刘世荣1,王晖1,李海奎2,余振3,栾军伟4
收稿日期:
2023-05-16
出版日期:
2024-04-25
发布日期:
2024-05-23
基金资助:
Shirong Liu1,Hui Wang1,Haikui Li2,Zhen Yu3,Junwei Luan4
Received:
2023-05-16
Online:
2024-04-25
Published:
2024-05-23
摘要:
增强森林固碳增汇功能是减缓大气二氧化碳浓度上升和全球气候变暖的重要手段,也是实现碳中和国家战略目标的有效途径。本研究基于文献分析法和模型模拟,系统阐述中国森林碳储量和碳汇现状、动态变化与潜力提升途径。根据国家森林资源连续清查数据测算的森林植被碳储量近5年平均年增长0.152 Pg(以C计),2000s—2010s中国陆地生态系统碳汇量约229.7 Tg·a?1(以C计),其中森林植被(指乔木林)碳储量约增加150.6 Tg·a?1(以C计),约占整个陆地生态系统植被碳汇量的65.6%。过去70年,中国森林已从碳源转变为逐渐增强的碳汇。在森林面积保持不变的情景下,相比2000s—2010s时段,2030年后现有乔木林的生物量碳汇将有所下降;如果森林面积未来持续增加,2030—2050年中国新增乔木林的碳汇量仍将呈增加趋势。在全球变化背景下,气候变化及其引发的风险(极端干旱与热浪事件、森林火灾、病虫害等)可能会削弱森林碳汇功能。为维持并提升森林碳储量和碳汇潜力,需要采取森林碳储与碳汇双增以及森林碳汇与木质林产品碳库协同提升的策略,从保碳、增碳、扩碳和碳资源化利用的汇转移4个途径对森林资源实施保护修复、精准绿化、科学经营与合理利用以及多时空尺度的优化布局,同时重视森林土壤碳库增汇的长期效应。在林业减缓和适应气候变化框架下,森林碳汇潜力提升未来研究重点是科学推进国土绿化适宜造林地和树种选择,森林经营增汇技术,森林碳储、碳汇协同提升与木质产品库的碳汇转移与存续的时空配置优化模式,森林土壤固碳增汇机制以及潜力研究,准确评估森林碳汇对实现国家碳中和目标的贡献及其时间表和路线图。
中图分类号:
刘世荣,王晖,李海奎,余振,栾军伟. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径[J]. 林业科学, 2024, 60(4): 157-172.
Shirong Liu,Hui Wang,Haikui Li,Zhen Yu,Junwei Luan. Projections of China’s Forest Carbon Storage and Sequestration and Ways of Their Potential Capacity Enhancement[J]. Scientia Silvae Sinicae, 2024, 60(4): 157-172.
表1
全国不同时期森林碳储量①"
项目 Item | 调查期Investigating period | 参考文献 Reference | |||||||||
1973— 1976 | 1977— 1981 | 1984— 1988 | 1989— 1993 | 1994— 1998 | 1999— 2003 | 2004— 2008 | 2009— 2013 | 2014— 2018 | 2021 | ||
碳储量 Carbon storage/ Pg | 5.20 | 5.59 | 5.75 | 5.84 | 5.93 | 6.47 | 6.91 | 7.64 | 7.82 | ||
3.91 | 4.15 | 4.32 | 4.85 | 5.32 | 6.15 | 6.64 | 7.36 | 8.36 | |||
4.44 | 4.38 | 4.45 | 4.63 | 4.75 | |||||||
3.85 | 3.70 | 3.76 | 4.11 | 4.66 | 5.51 | ||||||
6.66 | 7.14 | 7.58 | 8.99 | ||||||||
7.81 | 8.43 | 9.19 | 10.72 | ** |
表2
基于“自下而上”方法评估的中国陆地生态系统碳汇量①"
碳库 C pool | 生态系统 Ecosystem | 时期 Period/year | 面积* Area/106 hm2 | 碳汇量 Carbon sink/(Tg·a?1) | 参考文献 References |
生物质 Biomass | 森林 Forest | 1999—2013 | 150.4 (142.7~188.2) | 150.6 (94.9~236.8) | |
经济林 Economy forest | 1999—2008 | 20.9 (20.4~21.4) | 0.13 (?2.30~2.80) | ||
竹林Bamboo | 1999—2008 | 5.1 (4.8~5.4) | 2.26 (0.01~4.70) | ||
灌木Shrubs | 1999—2010 | 57.8 (45.3~74.3) | 1.18 (0.02~3.50) | ||
其他林地 Other woodlands | 1999—2008 | 5.9 (4.8~6.0) | ?2 | ||
其他林木 Trees outside forest | 1999—2008 | ?2 (?10~8) | |||
草地 Grassland | 1961—2013 | 339.7 (281.3~394.9) | 5.4(0~9.6) | ||
生物质合计 Subtotal | 155.6 (80.6~263.4) | ||||
死有机质 Dead organic matter | 森林 Forest | 2001—2010 | 188.2 | 9.0 | |
土壤有机碳** Soil organic carbon | 森林Forest | 1980—2010 | 196.4 (151.6~249.3) | 24.7 (11.7~37.6) | |
灌木Shrubs | 2001—2010 | 74.3 | 13.6 | ||
草地Grassland | 1981—2010 | 340.7 (281.3~400.0) | 1.2 (?2.6~4.9) | ||
农田Cropland | 1980—2010 | 143.8 (130.0~171.3) | 25.6 (24.0~28.6) | ||
土壤有机碳合计Subtotal | 65.1 (46.7~71.1) | ||||
合计Total | 229.7 (136.3~343.5) |
表3
中国森林(乔木林)生物量碳储量潜力估测"
项目 Item | 时期 Period/year | 碳储量 Carbon storage/ Pg | 2050年潜在碳储量 Potential carbon storage in 2050/Pg | 2050年碳汇量 Carbon sink in 2050/ (Pg·a?1) | 参考文献 References |
未来森林面积不变化 Future forest area will not change | 1981—2000 | 4.30-5.90 | 8.05-9.65 | 0.075 | |
2000起 Since 2000 | 6.01 | 13.86 | |||
2001—2050 | 6.30 | 11.22 | 0.098 | ||
—2050 | 11.56±2.04 | 0.089±0.060 | |||
未来森林面积增长 Future forest area growth | 2000—2050 | 5.86 | 13.09 | 0.145 | |
2010—2050 | 6.14 | 11.13 | 0.125 | ||
2010—2050 | 6.90 | 14.79 | 0.197 | ||
2020—2100 | 8.48 | 13.86 | 0.213 |
表4
树种选择和近自然林经营对土壤碳储量影响"
森林经营 Forest management | 土壤碳储量影响 Impact of soil carbon storage | 参考文献 References |
树种选择 Tree species selection | 格氏栲 > 杉木 Castanopsis kawakamii > Cunninghamia lanceolata | |
福建柏 > 杉木 Fokienia hodginsii > C. lanceolata | ||
红锥 > 马尾松,且高出11% Castanopsis hystrix > P. massoniana, and 11% higher | ||
火力楠 > 马尾松,且高出19% Michelia macclurei > P. massoniana, and 19% higher | ||
米老排 > 马尾松,且高出18% Mytilaria laosensis > P. massoniana, and 18% higher | ||
针阔混交林 > 针叶和阔叶纯林 Mixed coniferous and deciduous forests > pure coniferous and deciduous forests | ||
马尾松和红锥混交 > 马尾松,且高出14.3% P. massoniana and C. hystrix mixed forests > P. massoniana, and 14.3% higher | ||
马尾松和红锥混交 > 红锥,且高出8.1% Mixed P. massoniana and C. hystrix forests > C. hystrix, and 8.1% higher | ||
马占相思和尾叶桉混交可提高土壤碳汇功能 Mixture of Acacia mangium and Eucalyptus urophylla improved soil carbon sink function | ||
桉树人工林中引入固氮树种利于增加难降解碳含量和土壤碳汇 Introducing nitrogen-fixing species into Eucalyptus plantations increased the amount of non-degradable carbon and soil carbon sink | ||
针叶人工林中引入固氮树种利于增强土壤有机碳化学稳定性 Introducing nitrogen-fixing species into coniferous plantations improved the chemical stability of soil organic carbon | ||
近自然林经营 Near-natural forest management | 水曲柳人工纯林和近自然化培育的水曲柳-落叶松混交林 > 落叶松纯林 Pure plantation forests of ash and mixed larch and close-to-nature plantation ash forests > larch pure forests | |
未改造的纯林 > 马尾松近自然林(在马尾松纯林中套种红椎和香梓楠) Unmodified pure forests > close-to-nature P. massoniana forests (planting C. hystrix and Michelia gioii in a pure P. massoniana forests) | ||
挪威云杉纯林 > 欧洲山毛榉和挪威云杉的近自然林 > 欧洲山毛榉纯林 Pure Picea abies forests > close-to-nature plantation forests of Fagus sylvatica and Picea abies > pure Fagus sylvatica forests |
表5
森林经营措施对人工林土壤碳的影响"
森林经营 Forest management | 土壤碳储量影响 Impact of soil carbon storage | 参考文献 References |
抚育采伐 Intermediate cutting | 降低土壤碳含量 Reduced soil carbon | |
降低土壤总有机碳和易氧化碳 Reduced total soil organic carbon and readily oxidizable carbon | ||
提高马尾松林乔木层生物量和碳储量 Increased biomass and carbon storage in the tree layer of P. massoniana forests | ||
土壤含碳量随着抚育间伐强度的增加而出现先降后升的趋势 Soil carbon content decreased first and then increased with the increase of thinning intensity | ||
森林采伐 Deforestation | 降低土壤有机碳含量 Decreased soil organic carbon content | |
降低甲烷汇功能 Reduced methane sink function | ||
施肥 Fertilization | 增加土壤碳储量 Increased soil carbon storage | |
降低土壤有机碳固定和储量 Decreased soil organic carbon fixation and storage | ||
增加土壤呼吸 Increased soil respiration | ||
并未显著改变土壤呼吸 Did not significantly change soil respiration | ||
落叶松人工林土壤呼吸速率减少34.9% Soil respiration rate decreased by 34.9% in larch plantations | ||
水曲柳人工林土壤呼吸速率减少25.8% Soil respiration rate decreased by 25.8% in ash plantations | ||
炼山 Prescribed burning | 高强度野火可减少土壤有机碳 High-intensity wildfire reduced soil organic carbon | |
计划烧除对土壤有机碳没有显著影响 Planned burning had no significant effect on soil organic carbon | ||
针叶林发生野火后土壤有机碳明显降低 Soil organic carbon significantly decreased after wildfire in coniferous forests | ||
阔叶林发生野火后土壤有机碳增加 Soil organic carbon increased in broadleaf forests after wildfire | ||
高强度火烧比低强度降低61.4% High-intensity fire decreased by 61.4% compared to low-intensity | ||
中强度火烧比低强度降低39.5% Medium intensity fire decreased by 39.5% compared to low intensity fire | ||
随着火烧强度的增加,土壤碳的损失量增多 The loss of soil carbon increased with the increase of fire intensity | ||
土壤碳含量变化并不显著 Did not significantly change soil carbon content |
表6
中国木质林产品碳储量变化趋势①"
时期 Period/year | 碳储量 Carbon storage/Tg | 碳储量年平均增长量 Average yearly increment of carbon storage/( Tg·a?1) | 参考文献 References |
1960 | 130 | ||
1990 | 347.11 | ||
2004 | 532.38 | ||
2011 | 676 | ||
2014 | 705.6 | ||
1961—2004 | — | 7.9~11.73 | |
1999—2008 | — | 7.92 | |
1961—2011 | 10.63 | ||
1960—2014 | 10.66 | ||
2020—2100 | 1151* | 8.9±1.2 |
白彦锋, 姜春前, 张守攻. 中国木质林产品碳储量及其减排潜力. 生态学报, 2009, 29 (1): 399- 405. | |
Bai Y F, Jiang C Q, Zhang S G. Carbon stock and potential of emission reduction of harvested wood products in China. Acta Ecologica Sinica, 2009, 29 (1): 399- 405. | |
程 功, 吕 全, 冯益明, 等. 气候变化背景下松材线虫在中国分布的时空变化预测. 林业科学, 2015, 51 (6): 119- 126. | |
Cheng G, Lü Q, Feng Y M, et al. Temporal and spatial dynamic pattern of pine wilt disease distribution in China predicted under climate change scenario. Scientia Silvae Sinicae, 2015, 51 (6): 119- 126. | |
董钰鑫, 张一平, 沙丽清, 等. 施肥对西双版纳橡胶林土壤CO2排放的影响. 生态学杂志, 2015, 34 (9): 2576- 2582. | |
Dong Y X, Zhang Y P, Sha L Q, et al. Impacts of fertilizer application on CO2 emissions in rubber (Hevea brasilensis) plantation in Xishuangbanna, southwest China. Chinese Journal of Ecology, 2015, 34 (9): 2576- 2582. | |
方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算. 中国科学(D辑:地球科学), 2007, 37 (6): 804- 812. | |
Fang J Y, Guo Z D, Piao S L, et al. Estimation of carbon sinks of terrestrial vegetation in China from 1981 to 2000. Science in China (Series D:Earth Sciences), 2007, 37 (6): 804- 812. | |
冯瑞芳, 杨万勤, 张 健. 森林土壤有机层生化特性及其对气候变化的响应研究进展. 应用与环境生物学报, 2006, 12 (5): 734- 739. | |
Feng R F, Yang W Q, Zhang J. Review on biochemical property in forest soil organic layer and its responses to climate change. Chinese Journal of Applied & Environmental Biology, 2006, 12 (5): 734- 739. | |
付 超, 方华军, 于贵瑞. 三种主要干扰造成中国森林植被向大气中的碳排放量. 资源与生态学报, 2011, 2 (3): 202- 209. | |
Fu C, Fang H J, Yu G R. Carbon emissions from forest vegetation caused by three major disturbances in China. Journal of Resources and Ecology, 2011, 2 (3): 202- 209. | |
高升华, 张旭东, 汤玉喜, 等. 滩地美洲黑杨人工林皆伐对地表甲烷通量的短期影响. 林业科学, 2013, 49 (1): 7- 13. | |
Gao S H, Zhang X D, Tang Y X, et al. Short-term effects of clear-cutting of Populus deltoides plantation on methane flux on the beach land of Yangtze River. Scientia Silvae Sinicae, 2013, 49 (1): 7- 13. | |
谷会岩, 金靖博, 陈祥伟, 等. 不同火烧强度林火对大兴安岭北坡兴安落叶松林土壤化学性质的长期影响. 自然资源学报, 2010, 25 (7): 1114- 1121. | |
Gu H Y, Jin J B, Chen X W, et al. The long-term impacts on chemical properties of Larix gmelinii forest on the northern slope of greater Hinggan Mountains from a forest fire of varying fire intensity. Journal of Natural Resources, 2010, 25 (7): 1114- 1121. | |
国家林业和草原局. 2019a. 中国森林资源报告(2014—2018). 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019a. China forest resources report (2014—2018). Beijing: China Forestry Publishing House. [in Chinese] | |
国家林业和草原局. 2019b. 中国林业和草原统计年鉴2018. 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2019b. China forestry and grassland statistical yearbook 2018. Beijing: China Forestry Publishing House. [in Chinese] | |
国家林业和草原局. 2022. 2021中国林草资源及生态状况. 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2022. 2021 Forest and grassland resources and ecological status in China. Beijing: China Forestry Publishing House. [in Chinese] | |
国家林业局. 2009. 中国森林资源报告: 第七次全国森林资源清查. 北京: 中国林业出版社. | |
State Forestry Administration. 2009. China forest resources report: the seventh national forest resources inventory. Beijing: China Forestry Publishing House. [in Chinese] | |
国家林业局. 2014. 中国森林资源报告(2009—2013). 北京: 中国林业出版社. | |
State Forestry Administration. 2014. China forest resources report (2009—2013). Beijing: China Forestry Publishing House. [in Chinese] | |
韩营营, 黄 唯, 孙 涛, 等. 不同林龄白桦天然次生林土壤碳通量和有机碳储量. 生态学报, 2015, 35 (5): 1460- 1469. | |
Han Y Y, Huang W, Sun T, et al. Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing’an Mountain, China. Acta Ecologica Sinica, 2015, 35 (5): 1460- 1469. | |
何友均, 梁星云, 覃 林, 等. 南亚热带人工针叶纯林近自然改造早期对群落特征和土壤性质的影响. 生态学报, 2013, 33 (8): 2484- 2495.
doi: 10.5846/stxb201208261204 |
|
He Y J, Liang X Y, Qin L, et al. Community characteristics and soil properties of coniferous plantation forest monocultures in the early stages after close-to-nature transformation management in southern subtropical China. Acta Ecologica Sinica, 2013, 33 (8): 2484- 2495.
doi: 10.5846/stxb201208261204 |
|
何宗明, 李丽红, 王义祥, 等. 33年生福建柏人工林碳库与碳吸存. 山地学报, 2003, 21 (3): 298- 303.
doi: 10.3969/j.issn.1008-2786.2003.03.007 |
|
He Z M, Li L H, Wang Y X, et al. Carbon stock and carbon sequestration of a 33-year-old Fokienia hodginsii plantation. Journal of Mountain Research, 2003, 21 (3): 298- 303.
doi: 10.3969/j.issn.1008-2786.2003.03.007 |
|
贾淑霞, 王政权, 梅 莉, 等. 施肥对落叶松和水曲柳人工林土壤呼吸的影响. 植物生态学报, 2007, 31 (3): 372- 379. | |
Jia S X, Wang Z Q, Mei L, et al. Effect of nitrogen fertilization on soil respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Journal of Plant Ecology, 2007, 31 (3): 372- 379. | |
李海奎. 碳中和愿景下森林碳汇评估方法和固碳潜力预估研究进展. 中国地质调查, 2021, 8 (4): 79- 86. | |
Li H K. Research advance of forest carbon sink assessment methods and carbon sequestration potential estimation under carbon neutral vision. Geological Survey of China, 2021, 8 (4): 79- 86. | |
李海奎, 雷渊才, 曾伟生. 基于森林清查资料的中国森林植被碳储量. 林业科学, 2011, 47 (7): 7- 12. | |
Li H K, Lei Y C, Zeng W S. Forest carbon storage in China estimated using forestry inventory data. Scientia Silvae Sinicae, 2011, 47 (7): 7- 12. | |
李克让, 陈育峰, 刘世荣, 等. 减缓及适应全球气候变化的中国林业对策. 地理学报, 1996, 51 (S1): 109- 119. | |
Li K R, Chen Y F, Liu S R, et al. Mitigation and adaptation strategy of forestry in China to global climate change. Acta Geographica Sinica, 1996, 51 (S1): 109- 119. | |
李 奇, 朱建华, 冯 源, 等. 中国森林乔木林碳储量及其固碳潜力预测. 气候变化研究进展, 2018, 14 (3): 287- 294. | |
Li Q, Zhu J H, Feng Y, et al. Carbon storage and carbon sequestration potential of the forest in China. Climate Change Research, 2018, 14 (3): 287- 294. | |
李纫兰, 缪启龙, 王绍强, 等. 突发性火灾对南方湿地松人工林土壤碳储量的影响. 资源科学, 2009, 31 (4): 674- 680. | |
Li R L, Miao Q L, Wang S Q, et al. Effect of an unexpected fire on the amount of soil organic carbon in Pinus elliottii of south China. Resources Science, 2009, 31 (4): 674- 680. | |
梁 晶, 王庆成, 许丽娟, 等. 抚育对长白山两种林分凋落物分解及土壤的影响. 植物研究, 2015, 35 (2): 297- 303. | |
Liang J, Wang Q C, Xu L J, et al. Effect of thinning on litter decomposition and soil of two stands in Changbai Mountain. Bulletin of Botanical Research, 2015, 35 (2): 297- 303. | |
刘世荣. 2013. 气候变化对森林影响与适应性管理//邬建国, 安树青, 冷 欣. 现代生态学讲座(VI): 全球气候变化与生态格局和过程. 1版. 北京: 高等教育出版社, 1−14. | |
Liu S R. 2013. Impacts of climate changes on forests and adaptive forest managent//Wu J G, An S Q, Leng X. Lectures in modern ecology(VI): global climate change and ecological patterns and processes. 1st edition. Beijing: Higher Education Press, 1−14. [in Chinese] | |
刘世荣, 王 晖, 杨予静. 2017. 人工林多目标适应性经营提升土壤碳增汇功能//高玉葆, 邬建国. 现代生态学讲座(VIII): 群落、生态系统和景观生态学研究新进展. 1版 北京: 高等教育出版社, 64−89. | |
Liu S R, Wang H, Yang Y J. 2017. Multiple-purpose adaptation management of planted forests for enhancing soil carbon sequestration//Gao Y B, Wu J G. Lectures in modern ecology(VI): advances in community, ecosystem and landscape ecology. 1st edition. Beijing: Higher Education Press, 64−89. [in Chinese] | |
刘迎春, 高显连, 付 超, 等. 基于森林资源清查数据估算中国森林生物量固碳潜力. 生态学报, 2019, 39 (11): 4002- 4010. | |
Liu Y C, Gao X L, Fu C, et al. Estimation of carbon sequestration potential of forest biomass in China based on National Forest Resources Inventory. Acta Ecologica Sinica, 2019, 39 (11): 4002- 4010. | |
刘迎春, 于贵瑞, 王秋凤, 等. 基于成熟林生物量整合分析中国森林碳容量和固碳潜力. 中国科学:生命科学, 2015, 45 (2): 210- 222.
doi: 10.1360/zc2015-45-2-210 |
|
Liu Y C, Yu G R, Wang Q F, et al. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass. Scientia Sinica (Vitae), 2015, 45 (2): 210- 222.
doi: 10.1360/zc2015-45-2-210 |
|
路秋玲, 李愿会. 三江源自然保护区森林植被层碳储量及碳密度研究. 林业资源管理, 2018, (4): 146- 153. | |
Lu Q L, Li Y H. Study on carbon storage and carbon density of forest vegetation in Sanjiangyuan nature reserve. Forest Resources Management, 2018, (4): 146- 153. | |
明安刚, 张治军, 谌红辉, 等. 抚育间伐对马尾松人工林生物量与碳贮量的影响. 林业科学, 2013, 49 (10): 1- 6. | |
Ming A G, Zhang Z J, Chen H H, et al. Effects of thinning on the biomass and carbon storage in Pinus massoniana plantation. Scientia Silvae Sinicae, 2013, 49 (10): 1- 6. | |
史山丹, 赵鹏武, 周 梅, 等. 大兴安岭南部温带山杨天然次生林不同生长阶段生物量及碳储量. 生态环境学报, 2012, 21 (3): 428- 433. | |
Shi S D, Zhao P W, Zhou M, et al. Biomass and carbon storage of the secondary forest (Populus davidiana) at different stand growing stages in southern Daxing’anling temperature zone. Ecology and Environmental Sciences, 2012, 21 (3): 428- 433. | |
王 晖, 莫江明, 鲁显楷, 等. 南亚热带森林土壤微生物量碳对氮沉降的响应. 生态学报, 2008, 28 (2): 470- 478. | |
Wang H, Mo J M, Lu X K, et al. Effects of elevated nitrogen deposition on soil microbial biomass carbon in the main subtropical forests of southern China. Acta Ecologica Sinica, 2008, 28 (2): 470- 478. | |
王璐颖, 周 璋, 张 涛, 等. 树种组成和径级结构对热带次生林生物量恢复影响的研究. 植物科学学报, 2022, 40 (2): 169- 176. | |
Wang L Y, Zhou Z, Zhang T, et al. Effects of tree species composition and diameter class structure on biomass restoration of secondary tropical forest. Plant Science Journal, 2022, 40 (2): 169- 176. | |
王效科, 冯宗炜, 庄亚辉. 中国森林火灾释放的CO2、CO和CH4研究. 林业科学, 2001, 37 (1): 90- 95.
doi: 10.11707/j.1001-7488.20010113 |
|
Wang X K, Feng Z W, Zhuang Y H. CO2, CO and CH4 emissions from forest fires in China. Scientia Silvae Sinicae, 2001, 37 (1): 90- 95.
doi: 10.11707/j.1001-7488.20010113 |
|
王新宇, 王庆成. 水曲柳落叶松人工林近自然化培育对林地土壤理化性质的影响. 林业科学, 2008, 44 (12): 21- 27. | |
Wang X Y, Wang Q C. Effects of the close-to-nature cultivation of Larix olgensis and Fraxinus mandshurica on the soil physiochemical properties. Scientia Silvae Sinicae, 2008, 44 (12): 21- 27. | |
王云霖. 我国人工林发展研究. 林业资源管理, 2019, (1): 6- 11. | |
Wang Y L. Review on China’s plantation development since the reform and opening up. Forest Resources Management, 2019, (1): 6- 11. | |
魏亚伟, 周旺明, 周 莉, 等. 兴安落叶松天然林碳储量及其碳库分配特征. 生态学报, 2015, 35 (1): 189- 195. | |
Wei Y W, Zhou W M, Zhou L, et al. Carbon storage and its distribution pattern in the natural Larix gmelinii forests on Daxing’an Mountains. Acta Ecologica Sinica, 2015, 35 (1): 189- 195. | |
吴庆标, 王效科, 段晓男, 等. 中国森林生态系统植被固碳现状和潜力. 生态学报, 2008, 28 (2): 517- 524. | |
Wu Q B, Wang X K, Duan X N, et al. Carbon sequestration and its potential by forest ecosystems in China. Acta Ecologica Sinica, 2008, 28 (2): 517- 524. | |
吴亚丛, 李正才, 程彩芳, 等. 林下植被抚育对樟树人工林土壤活性有机碳库的影响. 应用生态学报, 2013, 24 (12): 3341- 3346. | |
Wu Y C, Li Z C, Cheng C F, et al. Effects of understory removal on soil labile organic carbon pool in a Cinnamomum camphora plantation. Chinese Journal of Applied Ecology, 2013, 24 (12): 3341- 3346. | |
徐 冰, 郭兆迪, 朴世龙, 等. 2000—2050年中国森林生物量碳库: 基于生物量密度与林龄关系的预测. 中国科学:生命科学, 2010, 40 (7): 587- 594.
doi: 10.1360/zc2010-40-7-587 |
|
Xu B, Guo Z D, Piao S L, et al. Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships. Scientia Sinica (Vitae), 2010, 40 (7): 587- 594.
doi: 10.1360/zc2010-40-7-587 |
|
徐新良, 曹明奎, 李克让. 中国森林生态系统植被碳储量时空动态变化研究. 地理科学进展, 2007, 26 (6): 1- 10.
doi: 10.3969/j.issn.1007-6301.2007.06.001 |
|
Xu X L, Cao M K, Li K R. Temporal-spatial dynamics of carbon storage of forest vegetation in China. Progress in Geography, 2007, 26 (6): 1- 10.
doi: 10.3969/j.issn.1007-6301.2007.06.001 |
|
杨红强, 季春艺, 杨 惠, 等. 全球气候变化下中国林产品的减排贡献: 基于木质林产品固碳功能核算. 自然资源学报, 2013, 28 (12): 2023- 2033. | |
Yang H Q, Ji C Y, Yang H, et al. Global climate change and China’s contribution to carbon reduction: based on carbon storage accounting of Chinese harvested wood products. Journal of Natural Resources, 2013, 28 (12): 2023- 2033. | |
杨红强, 余智涵. 全球木质林产品碳科学研究动态及未来的重点问题. 南京林业大学学报(自然科学版), 2021, 45 (4): 219- 228. | |
Yang H Q, Yu Z H. Research trends and future key issues of global harvested wood products carbon science. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45 (4): 219- 228. | |
杨玉盛, 陈光水, 王义祥, 等. 格氏栲人工林和杉木人工林碳库及分配. 林业科学, 2006, 42 (10): 43- 47. | |
Yang Y S, Chen G S, Wang Y X, et al. Carbon storage and allocation in Castanopsis kawakamii and Cunninghamia lanceolata plantations in subtropical China. Scientia Silvae Sinicae, 2006, 42 (10): 43- 47. | |
张星耀, 吕 全, 冯益明, 等. 2011. 中国松材线虫病危险性评估及对策. 北京: 科学出版社. | |
Zhang X Y, Lü Q, Feng Y M, et al. 2011. Risk assessment and countermeasures of pine wood nematode disease in China. Beijing: Science Press. [in Chinese] | |
张 颖, 李晓格, 温亚利. 碳达峰碳中和背景下中国森林碳汇潜力分析研究. 北京林业大学学报, 2022, 44 (1): 38- 47. | |
Zhang Y, Li X G, Wen Y L. Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization. Journal of Beijing Forestry University, 2022, 44 (1): 38- 47. | |
张煜星, 王雪军. 全国森林蓄积生物量模型建立和碳变化研究. 中国科学:生命科学, 2021, 51 (2): 199- 214.
doi: 10.1360/SSV-2020-0301 |
|
Zhang Y X, Wang X J. Study on forest volume-to-biomass modeling and carbon storage dynamics in China. Scientia Sinica (Vitae), 2021, 51 (2): 199- 214.
doi: 10.1360/SSV-2020-0301 |
|
Ali A, Yan E R, Chen H Y H, et al. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in eastern China. Biogeosciences, 2016, 13 (16): 4627- 4635.
doi: 10.5194/bg-13-4627-2016 |
|
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259 (4): 660- 684.
doi: 10.1016/j.foreco.2009.09.001 |
|
Amiro B D, Barr A G, Barr J G, et al. Ecosystem carbon dioxide fluxes after disturbance in forests of north America. Journal of Geophysical Research:Biogeosciences, 2010, 115 (G4): 383. | |
Anderegg W R L, Schwalm C, Biondi F, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 2015, 349 (6247): 528- 532.
doi: 10.1126/science.aab1833 |
|
Anderegg W R L, Trugman A T, Badgley G, et al. Climate-driven risks to the climate mitigation potential of forests. Science, 2020, 368 (6497): eaaz7005.
doi: 10.1126/science.aaz7005 |
|
Aragão L E O C, Shimabukuro Y E. The incidence of fire in Amazonian forests with implications for REDD. Science, 2010, 328 (5983): 1275- 1278.
doi: 10.1126/science.1186925 |
|
Baeten L, Bruelheide H, van der Plas F, et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of Applied Ecology, 2019, 56 (3): 733- 744.
doi: 10.1111/1365-2664.13308 |
|
Bastin J F, Finegold Y, Garcia C, et al. The global tree restoration potential. Science, 2019, 365 (6448): 76- 79.
doi: 10.1126/science.aax0848 |
|
Beedlow P A, Tingey D T, Phillips D L, et al. Rising atmospheric CO2 and carbon sequestration in forests. Frontiers in Ecology and the Environment, 2004, 2 (6): 315- 322. | |
Berger T W, Untersteiner H, Toplitzer M, et al. Nutrient fluxes in pure and mixed stands of spruce (Picea abies) and beech (Fagus sylvatica). Plant and Soil, 2009, 322 (1): 317- 342. | |
Brando P M, Balch J K, Nepstad D C, et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (17): 6347- 6352. | |
Brando P M, Paolucci L, Ummenhofer C C, et al. Droughts, wildfires, and forest carbon cycling: a pantropical synthesis. Annual Review of Earth and Planetary Sciences, 2019, 47 (1): 555- 581.
doi: 10.1146/annurev-earth-082517-010235 |
|
Brando P M, Soares-Filho B, Rodrigues L, et al. The gathering firestorm in southern Amazonia. Science Advances, 2020, 6 (2): eaay1632.
doi: 10.1126/sciadv.aay1632 |
|
Büntgen U, Krusic P J, Piermattei A, et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications, 2019, 10 (1): 2171.
doi: 10.1038/s41467-019-10174-4 |
|
Cai W X, He N P, Li M X, et al. Carbon sequestration of Chinese forests from 2010 to 2060: spatiotemporal dynamics and its regulatory strategies. Science Bulletin, 2022, 67 (8): 836- 843.
doi: 10.1016/j.scib.2021.12.012 |
|
Cao S X, Chen L, Shankman D, et al. Excessive reliance on afforestation in China’s arid and semi-arid regions: lessons in ecological restoration. Earth-Science Reviews, 2011, 104 (4): 240- 245.
doi: 10.1016/j.earscirev.2010.11.002 |
|
Cardinale B J, Gross K, Fritschie K, et al. Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent. Ecology, 2013, 94 (8): 1697- 1707.
doi: 10.1890/12-1334.1 |
|
Chen C, Park T, Wang X H, et al. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2, 122- 129.
doi: 10.1038/s41893-019-0220-7 |
|
Chen S P, Wang W T, Xu W T, et al. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4027- 4032. | |
Chen S Y, Lu N, Fu B J, et al. Current and future carbon stocks of natural forests in China. Forest Ecology and Management, 2022, 511, 120137.
doi: 10.1016/j.foreco.2022.120137 |
|
Dai L M, Jia J, Yu D P, et al. Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China. Forest Ecology and Management, 2013, 300, 106- 116.
doi: 10.1016/j.foreco.2012.06.046 |
|
Dai L M, Li S L, Zhou W M, et al. Opportunities and challenges for the protection and ecological functions promotion of natural forests in China. Forest Ecology and Management, 2018, 410, 187- 192.
doi: 10.1016/j.foreco.2017.09.044 |
|
Deng L, Liu S G, Kim D G, et al. Past and future carbon sequestration benefits of China’s grain for green program. Global Environmental Change, 2017, 47, 13- 20.
doi: 10.1016/j.gloenvcha.2017.09.006 |
|
Di Sacco A, Hardwick K A, Blakesley D, et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 2021, 27 (7): 1328- 1348.
doi: 10.1111/gcb.15498 |
|
Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263 (5144): 185- 190.
doi: 10.1126/science.263.5144.185 |
|
Dymond C C, Neilson E T, Stinson G, et al. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems, 2010, 13 (6): 917- 931.
doi: 10.1007/s10021-010-9364-z |
|
Erni S, Arseneault D, Parisien M A, et al. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga. Global Change Biology, 2017, 23 (3): 1152- 1166.
doi: 10.1111/gcb.13461 |
|
Fang J Y, Guo Z D, Hu H F, et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 2014, 20 (6): 2019- 2030.
doi: 10.1111/gcb.12512 |
|
Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981–2000. Science in China Series D:Earth Sciences, 2007, 50 (9): 1341- 1350.
doi: 10.1007/s11430-007-0049-1 |
|
Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292 (5525): 2320- 2322.
doi: 10.1126/science.1058629 |
|
Fang Y, Chen Y J, Tian C G, et al. Cycling and budgets of organic and black carbon in coastal Bohai Sea, China: impacts of natural and anthropogenic perturbations. Global Biogeochemical Cycles, 2018, 32 (6): 971- 986.
doi: 10.1029/2017GB005863 |
|
Feng Y H, Schmid B, Loreau M, et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science, 2022, 376 (6595): 865- 868.
doi: 10.1126/science.abm6363 |
|
Fernández-Martínez M, Peñuelas J, Chevallier F, et al. Diagnosing destabilization risk in global land carbon sinks. Nature, 2023, 615 (7954): 848- 853.
doi: 10.1038/s41586-023-05725-1 |
|
Forzieri G, Girardello M, Ceccherini G, et al. Emergent vulnerability to climate-driven disturbances in European forests. Nature Communications, 2021, 12 (1): 1081.
doi: 10.1038/s41467-021-21399-7 |
|
Gatti L V, Basso L S, Miller J B, et al. Amazonia as a carbon source linked to deforestation and climate change. Nature, 2021, 595 (7867): 388- 393.
doi: 10.1038/s41586-021-03629-6 |
|
Guo Z D, Fang J Y, Pan Y D, et al. Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. Forest Ecology and Management, 2010, 259 (7): 1225- 1231.
doi: 10.1016/j.foreco.2009.09.047 |
|
Guo Z D, Hu H F, Li P, et al. Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Science China Life Sciences, 2013, 56 (7): 661- 671.
doi: 10.1007/s11427-013-4492-2 |
|
Hicke J A, Allen C D, Desai A R, et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 2012, 18 (1): 7- 34.
doi: 10.1111/j.1365-2486.2011.02543.x |
|
Hua F Y, Bruijnzeel L A, Meli P, et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 2022, 376 (6595): 839- 844.
doi: 10.1126/science.abl4649 |
|
Huang C, Feng J Y, Tang F R, et al. Predicting the responses of boreal forests to climate-fire-vegetation interactions in northeast China. Environmental Modelling & Software, 2022, 153, 105410. | |
Huang X M, Liu S R, Wang H, et al. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biology and Biochemistry, 2014, 73, 42- 48.
doi: 10.1016/j.soilbio.2014.01.021 |
|
Huang X M, Liu S R, You Y M, et al. Microbial community and associated enzymes activity influence soil carbon chemical composition in Eucalyptus urophylla plantation with mixing N2-fixing species in subtropical China. Plant and Soil, 2017, 414 (1): 199- 212. | |
Huang Y, Sun W J, Zhang W, et al. Changes in soil organic carbon of terrestrial ecosystems in China: a mini-review. Science China Life Sciences, 2010, 53 (7): 766- 775.
doi: 10.1007/s11427-010-4022-4 |
|
IPCC. 2021. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. | |
IPCC. 2022. Climate change 2022: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. | |
Ji C Y, Cao W B, Chen Y, et al. Carbon balance and contribution of harvested wood products in China based on the production approach of the intergovernmental panel on climate change. International Journal of Environmental Research and Public Health, 2016, 13 (11): 1132.
doi: 10.3390/ijerph13111132 |
|
Ji L Z, Wang Z, Wang X W, et al. Forest insect pest management and forest management in China: an overview. Environmental Management, 2011, 48 (6): 1107- 1121.
doi: 10.1007/s00267-011-9697-1 |
|
Johnson D W, Curtis P S. Effects of forest management on soil C and N storage: meta analysis. Forest Ecology and Management, 2001, 140 (2/3): 227- 238. | |
Keenan T F, Gray J, Friedl M A, et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 2014, 4 (7): 598- 604.
doi: 10.1038/nclimate2253 |
|
Kheshgi H S, Jain A K, Wuebbles D J. Accounting for the missing carbon-sink with the CO2-fertilization effect. Climatic Change, 1996, 33 (1): 31- 62.
doi: 10.1007/BF00140512 |
|
Kurz W A, Dymond C C, Stinson G, et al. Mountain pine beetle and forest carbon feedback to climate change. Nature, 2008, 452 (7190): 987- 990.
doi: 10.1038/nature06777 |
|
Li T, Chen Y Z, Han L J, et al. Shortened duration and reduced area of frozen soil in the Northern Hemisphere. The Innovation, 2021a, 2 (3): 100146.
doi: 10.1016/j.xinn.2021.100146 |
|
Li X Y, Wang Y P, Lu X J, et al. Diagnosing the impacts of climate extremes on the interannual variations of carbon fluxes of a subtropical evergreen mixed forest. Agricultural and Forest Meteorology, 2021b, 307, 108507.
doi: 10.1016/j.agrformet.2021.108507 |
|
Liu W W, Guo Z L, Lu F, et al. The influence of disturbance and conservation management on the greenhouse gas budgets of China’s forests. Journal of Cleaner Production, 2020, 261, 121000.
doi: 10.1016/j.jclepro.2020.121000 |
|
Liu W W, Lu F, Luo Y J, et al. Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China. Ecology and Evolution, 2017a, 7 (16): 6220- 6230.
doi: 10.1002/ece3.3188 |
|
Liu Y, Wang C, Chen M P. Carbon flow analysis of China's agro-ecosystem from 1980 to 2013: a perspective from substance flow analysis. Journal of Environmental Sciences, 2017b, 55 (5): 20- 32. | |
Liu Z H, Yang J, Chang Y, et al. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Global Change Biology, 2012, 18 (6): 2041- 2056.
doi: 10.1111/j.1365-2486.2012.02649.x |
|
Lu F, Hu H F, Sun W J, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4039- 4044. | |
Luan J W, Li S Y, Liu S R, et al. 2024. Biodiversity mitigates drought effects in the decomposer system across biomes. Proceedings of the National Academy of Sciences of the United States of America, 121(13): e2313334121. | |
Luan J W, Liu S R, Wang J X, et al. Rhizospheric and heterotrophic respiration of a warm-temperate oak chronosequence in China. Soil Biology and Biochemistry, 2011, 43 (3): 503- 512.
doi: 10.1016/j.soilbio.2010.11.010 |
|
Luan J W, Liu S R, Wang J X, et al. Tree species diversity promotes soil carbon stability by depressing the temperature sensitivity of soil respiration in temperate forests. The Science of the Total Environment, 2018, 645, 623- 629.
doi: 10.1016/j.scitotenv.2018.07.036 |
|
Lun F, Li W H, Liu Y. Complete forest carbon cycle and budget in China, 1999–2008. Forest Ecology and Management, 2012, 264, 81- 89.
doi: 10.1016/j.foreco.2011.10.004 |
|
Luo W X, Kim H S, Zhao X H, et al. New forest biomass carbon stock estimates in Northeast Asia based on multisource data. Global Change Biology, 2020, 26 (12): 7045- 7066.
doi: 10.1111/gcb.15376 |
|
Marqués L, Madrigal-González J, Zavala M A, et al. Last-century forest productivity in a managed dry-edge scots pine population: the two sides of climate warming. Ecological Applications:a Publication of the Ecological Society of America, 2018, 28 (1): 95- 105.
doi: 10.1002/eap.1631 |
|
Maxwell S L, Evans T, Watson J E M, et al. Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Science Advances, 2019, 5 (10): eaax2546.
doi: 10.1126/sciadv.aax2546 |
|
Mitchard E T A. The tropical forest carbon cycle and climate change. Nature, 2018, 559 (7715): 527- 534.
doi: 10.1038/s41586-018-0300-2 |
|
Ning H, Tang M, Chen H. Impact of climate change on potential distribution of Chinese white pine beetle Dendroctonus armandi in China. Forests, 2021, 12 (5): 544.
doi: 10.3390/f12050544 |
|
Nolan C J, Field C B, Mach K J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nature Reviews Earth & Environment, 2021, 2 (6): 436- 446. | |
Norby R J, Wullschleger S D, Gunderson C A, et al. 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, Cell & Environment, 22(6): 683−714. | |
Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests. Science, 2011, 333 (6045): 988- 993.
doi: 10.1126/science.1201609 |
|
Parmesan C, Ryrholm N, Stefanescu C, et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 1999, 399 (6736): 579- 583.
doi: 10.1038/21181 |
|
Peng C H, Ma Z H, Lei X D, et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 2011, 1 (9): 467- 471.
doi: 10.1038/nclimate1293 |
|
Peng Y Y, Thomas S C, Tian D. Forest management and soil respiration: implications for carbon sequestration. Environmental Reviews, 2008, 16, 93- 111.
doi: 10.1139/A08-003 |
|
Phillips O L, Aragão L E O C, Lewis S L, et al. Drought sensitivity of the Amazon rainforest. Science, 2009, 323 (5919): 1344- 1347.
doi: 10.1126/science.1164033 |
|
Piao S L, Fang J Y, Zhou L M, et al. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 2007, 21 (2): GB2002. | |
Ramo R, Roteta E, Bistinas I, et al. 2021. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proceedings of the National Academy of Sciences of the United States of America, 118(9): e2011160118. | |
Robbins Z J, Xu C G, Aukema B H, et al. Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California. Global Change Biology, 2022, 28 (2): 509- 523.
doi: 10.1111/gcb.15927 |
|
Rowland L, da Costa A C L, Galbraith D R, et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 2015, 528 (7580): 119- 122.
doi: 10.1038/nature15539 |
|
Seidl R, Klonner G, Rammer W, et al. Invasive alien pests threaten the carbon stored in Europe’s forests. Nature Communications, 2018, 9, 1626.
doi: 10.1038/s41467-018-04096-w |
|
Tang X L, Zhao X, Bai Y F, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4021- 4026. | |
Tian H Q, Melillo J, Lu C Q, et al. China’s terrestrial carbon balance: contributions from multiple global change factors. Global Biogeochemical Cycles, 2011, 25 (1): GB1007. | |
Tong X W, Brandt M, Yue Y M, et al. Forest management in southern China generates short term extensive carbon sequestration. Nature Communications, 2020, 11, 129.
doi: 10.1038/s41467-019-13798-8 |
|
Vicente-Serrano S M, Gouveia C, Camarero J J, et al. Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (1): 52- 57. | |
Walker X J, Baltzer J L, Cumming S G, et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 2019, 572 (7770): 520- 523.
doi: 10.1038/s41586-019-1474-y |
|
Wang H, Ding Y, Zhang Y G, et al. Evenness of soil organic carbon chemical components changes with tree species richness, composition and functional diversity across forests in China. Global Change Biology, 2023, 29 (10): 2852- 2864.
doi: 10.1111/gcb.16653 |
|
Wang H, Huang Y, Feng Z W, et al. C and N stocks under three plantation forest ecosystems of Chinese fir, Michelia macclurei and their mixture. Frontiers of Forestry in China, 2007, 2 (3): 251- 259.
doi: 10.1007/s11461-007-0041-0 |
|
Wang H, Liu S R, Mo J M, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecological Research, 2010a, 25 (6): 1071- 1079.
doi: 10.1007/s11284-010-0730-2 |
|
Wang J, Epstein H E, Wang L X. Soil CO2 flux and its controls during secondary succession. Journal of Geophysical Research:Biogeosciences, 2010b, 115 (G2): 8. | |
Wang X F, Xiao J F, Li X, et al. No trends in spring and autumn phenology during the global warming hiatus. Nature Communications, 2019a, 10 (1): 2389.
doi: 10.1038/s41467-019-10235-8 |
|
Wang H, Liu S R, Song Z C, et al. Introducing nitrogen-fixing tree species and mixing with Pinus massoniana alters and evenly distributes various chemical compositions of soil organic carbon in a planted forest in southern China. Forest Ecology and Management, 2019b, 449, 117477.
doi: 10.1016/j.foreco.2019.117477 |
|
Wang X Y, Zhao C Y, Jia Q Y. Impacts of climate change on forest ecosystems in northeast China. Advances in Climate Change Research, 2013a, 4 (4): 230- 241.
doi: 10.3724/SP.J.1248.2013.230 |
|
Wang H, Liu S R, Wang J X, et al. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management, 2013b, 300, 4- 13.
doi: 10.1016/j.foreco.2012.04.005 |
|
Wang H, Song Z C, Wang J X, et al. The quadratic relationship between tree species richness and topsoil organic carbon stock in a subtropical mixed-species planted forest. European Journal of Forest Research, 2022a, 141 (6): 1151- 1161.
doi: 10.1007/s10342-022-01498-w |
|
Wang J, Wang H, Li X, et al. Effects of environmental factors and tree species mixtures on the functional groups of soil organic carbon across subtropical plantations in southern China. Plant and Soil, 2022b, 480 (1): 265- 281. | |
Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 2020a, 586 (7831): 720- 723.
doi: 10.1038/s41586-020-2849-9 |
|
Wang S H, Zhang Y G, Ju W M, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 2020b, 370 (6522): 1295- 1300.
doi: 10.1126/science.abb7772 |
|
Wang Q K, Zhong M C, Wang S L. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. Forest Ecology and Management, 2012, 271, 91- 97.
doi: 10.1016/j.foreco.2012.02.006 |
|
Wessely J, Gattringer A, Guillaume F, et al. Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants. Nature Climate Change, 2022, 12 (1): 77- 82.
doi: 10.1038/s41558-021-01255-8 |
|
Wigneron J P, Fan L, Ciais P, et al. Tropical forests did not recover from the strong 2015—2016 El Niño event. Science Advances, 2020, 6 (6): eaay4603.
doi: 10.1126/sciadv.aay4603 |
|
Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13 (9): 1989- 2007.
doi: 10.1111/j.1365-2486.2007.01409.x |
|
Yanai R D, Currie W S, Goodale C L. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems, 2003, 6 (3): 197- 212.
doi: 10.1007/s10021-002-0206-5 |
|
Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 2022, 65 (5): 861- 895.
doi: 10.1007/s11427-021-2045-5 |
|
Yao Y T, Piao S L, Wang T. Future biomass carbon sequestration capacity of Chinese forests. Science Bulletin, 2018, 63 (17): 1108- 1117.
doi: 10.1016/j.scib.2018.07.015 |
|
Ye X D, Luan J W, Wang H, et al. Tree species richness and N-fixing tree species enhance the chemical stability of soil organic carbon in subtropical plantations. Soil Biology and Biochemistry, 2022, 174, 108828.
doi: 10.1016/j.soilbio.2022.108828 |
|
Yildiz O, Cromack K Jr, Radosevich S R, et al. Comparison of 5th- and 14th-year Douglas-fir and understory vegetation responses to selective vegetation removal. Forest Ecology and Management, 2011, 262 (4): 586- 597.
doi: 10.1016/j.foreco.2011.04.015 |
|
Yin S W, Gong Z W, Gu L, et al. Driving forces of the efficiency of forest carbon sequestration production: spatial panel data from the national forest inventory in China. Journal of Cleaner Production, 2022, 330, 129776.
doi: 10.1016/j.jclepro.2021.129776 |
|
Yu Y Q, Huang Y, Zhang W. Modeling soil organic carbon change in croplands of China, 1980—2009. Global and Planetary Change, 2012, 82/83, 115- 128.
doi: 10.1016/j.gloplacha.2011.12.005 |
|
Yu Y Q, Huang Y, Zhang W. 2013. Projected changes in soil organic carbon stocks of China’s croplands under different agricultural managements, 2011–2050. Agriculture, Ecosystems & Environment, 178: 109−120. | |
Yu Z, Ciais P, Piao S L, et al. Forest expansion dominates China’s land carbon sink since 1980. Nature Communications, 2022, 13 (1): 5374.
doi: 10.1038/s41467-022-32961-2 |
|
Yu Z, Liu S R, Wang J X, et al. Natural forests exhibit higher carbon sequestration and lower water consumption than planted forests in China. Global Change Biology, 2019, 25 (1): 68- 77.
doi: 10.1111/gcb.14484 |
|
Yu Z, Liu S, Li H K, et al. 2024. Maximizing carbon sequestration potential in Chinese forests through optimal management, Nature Communications (In Press) | |
Yu Z, You W B, Agathokleous E, et al. Forest management required for consistent carbon sink in China’s forest plantations. Forest Ecosystems, 2021, 8 (1): 54.
doi: 10.1186/s40663-021-00335-7 |
|
Yu Z, Zhou G Y, Liu S R, et al. Impacts of forest management intensity on carbon accumulation of China’s forest plantations. Forest Ecology and Management, 2020, 472, 118252.
doi: 10.1016/j.foreco.2020.118252 |
|
Zhang C H, Ju W M, Chen J M, et al. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Climatic Change, 2013, 118 (3): 933- 948. | |
Zhang C H, Ju W M, Chen J M, et al. Sustained biomass carbon sequestration by China’s forests from 2010 to 2050. Forests, 2018, 9 (11): 689.
doi: 10.3390/f9110689 |
|
Zhang L, Sun P S, Huettmann F, et al. 2022. Where should China practice forestry in a warming world? Global Change Biology, 28(7): 2461-2475. | |
Zhang M L, Lal R, Zhao Y Y, et al. Estimating net primary production of natural grassland and its spatio-temporal distribution in China. The Science of the Total Environment, 2016, 553, 184- 195.
doi: 10.1016/j.scitotenv.2016.02.106 |
|
Zhao M M, Yang J L, Zhao N, et al. Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013. Forest Ecology and Management, 2019, 448, 528- 534.
doi: 10.1016/j.foreco.2019.06.036 |
|
Zhao M M, Yang J L, Zhao N, et al. Estimation of the relative contributions of forest areal expansion and growth to China’s forest stand biomass carbon sequestration from 1977 to 2018. Journal of Environmental Management, 2021, 300, 113757.
doi: 10.1016/j.jenvman.2021.113757 |
|
Zhao Y C, Wang M Y, Hu S J, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4045- 4050. | |
Zhou G Y, Liu S G, Li Z A, et al. Old-growth forests can accumulate carbon in soils. Science, 2006, 314 (5804): 1417.
doi: 10.1126/science.1130168 |
[1] | 王智超,马天天,邵亚奎,孙林豪,李永华,张晓媛,张丽荣,张贵,范文义,冯仲科. 面向未来的中国智慧林业:观测仪器体系的演进与发展趋势[J]. 林业科学, 2024, 60(4): 1-15. |
[2] | 陈卓,刘海洋,黄全义,郑明章,栗健. 森林火灾蔓延模拟及应急路径规划优选[J]. 林业科学, 2024, 60(4): 52-61. |
[3] | 龚金玉,马致远,胡琛,李田,雷静品. 原始森林的概念、生态功能及研究进展[J]. 林业科学, 2024, 60(4): 173-182. |
[4] | 周小东,常顺利,王冠正,孙雪娇,张毓涛,李翔. 天山雪岭云杉径向生长响应气候变化的海拔分异[J]. 林业科学, 2024, 60(3): 45-56. |
[5] | 沈琛琛,肖文发,朱建华,曾立雄,陈吉臻,黄志霖. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子[J]. 林业科学, 2024, 60(3): 65-77. |
[6] | 杨文翰,刘天宇,周俊池,胡文武,蒋蘋. 基于改进YOLOv5s的CNN-Swin Transformer森林野生动物图像目标检测算法[J]. 林业科学, 2024, 60(3): 121-130. |
[7] | 吕梓晴, 段爱国. 不同产区杉木生物量与碳储量模型[J]. 林业科学, 2024, 60(2): 1-11. |
[8] | 张芸香, 吕世琪, 刘泰瑞, 李晋芳, 郭晋平. 关帝山3个典型森林群落优势种的氮素利用策略差异[J]. 林业科学, 2024, 60(2): 12-20. |
[9] | 刘效东, 褚国伟, 焦正利, 张卫强, 张倩媚, 刘菊秀. 鼎湖山森林流域地表水与地下水水质的长期特征[J]. 林业科学, 2024, 60(2): 21-31. |
[10] | 赵杼祺, 胡振宏, 何鲜, 黄志群. 森林木质残体微生物群落构建机制研究进展[J]. 林业科学, 2024, 60(2): 106-117. |
[11] | 胡刚,庞庆玲,胡聪,徐超昊,张忠华. 中亚热带喀斯特森林树木功能型的生态位特征[J]. 林业科学, 2024, 60(1): 1-11. |
[12] | 劳万里,李晓玲,段新芳. 木竹产品碳足迹评价研究进展[J]. 林业科学, 2024, 60(1): 142-150. |
[13] | 杨雪峰, 木尼热·买买提. 基于多角度卫星遥感的胡杨林结构参数获取[J]. 林业科学, 2023, 59(9): 34-44. |
[14] | 陈兵, 赵凤君, 范太云, 吴莉娟, 江智全, 赵爽, 叶江霞. 西昌市森林防火综合阻隔网空间布局[J]. 林业科学, 2023, 59(9): 127-138. |
[15] | 王博,杨雪清,蒋春颖,刘冬,陈锋,白夜,刘晓东. 基于GIS的北京市延庆区森林火灾蔓延风险[J]. 林业科学, 2023, 59(8): 90-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||