Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (9): 50-58.doi: 10.11707/j.1001-7488.LYKX20230385
Previous Articles Next Articles
Shixin Zhang1,2(),Yangyang Geng1,2,Ting Zhou3,*,Jihui Wang1,2,Bokai Hu1,2,Yana Liu1,2
Received:
2023-08-24
Online:
2024-09-25
Published:
2024-10-08
Contact:
Ting Zhou
E-mail:1510208632@qq.com
CLC Number:
Shixin Zhang,Yangyang Geng,Ting Zhou,Jihui Wang,Bokai Hu,Yana Liu. Regulation of Lactarius akahatsu on the Growth and Root Metabolites of Pinus massoniana and Pinus armandii Seedlings[J]. Scientia Silvae Sinicae, 2024, 60(9): 50-58.
Fig.2
Mycorrhizal colonization rate and mycorrhizal dependency PM and PA represents Pinus massoniana and Pinus armandii seedlings with non-inoculated Lactarius akahatsu, PM×LA and PA×LA represents Pinus massoniana and Pinus armandii seedlings with inoculated Lactarius akahatsu.* and ** indicate that the results of one-way ANOVA test have significant difference (P<0.05)and extremely significant difference(P<0.01),respectively."
Table 1
Growth index of seedlings of two pine species"
处理 Treatment | 株高 Plant height/cm | 地径 Ground diameter/ cm | 地上部分Shoot | 地下部分Root | 总生物量 Total biomass/g | |||
鲜质量 Fresh weight/g | 干质量 Dry weight/g | 鲜质量 Fresh weight/g | 干质量 Dry weight/g | |||||
PM | 7.19±1.56b | 1.13±0.24a | 0.31±0.13b | 0.13±0.06b | 0.77±0.32a | 0.13±0.05a | 0.26±0.10a | |
PM×LA | 9.59±1.69a | 1.15±0.18a | 0.45±0.15a | 0.17±0.06a | 0.71±0.34a | 0.14±0.07a | 0.31±0.12a | |
PA | 10.50±2.03a | 2.07±0.23a | 1.36±0.36a | 0.52±0.16a | 2.31±0.95b | 0.47±0.17b | 0.99±0.17a | |
PA×LA | 11.01±1.90a | 2.09±0.23a | 1.44±0.94a | 0.59±0.14a | 2.86±0.78a | 0.63±0.15a | 1.15±0.15a |
Table 2
Lactarius akahatsu inoculation on the seedling root morphological parameters of two pine species"
处理 Treatment | 总根长 Total root length/cm | 根表面积 Root surface area/cm2 | 平均直径 Average diameter/mm | 体积 Volume/mm3 | 根尖数 Tips | 分叉数 Bifurcation | 根部含水率 Root moisture content(%) |
PM | 18.91±2.01b | 24.10±4.89b | 0.44±0.05a | 0.29±0.02b | 909.44±15.91b | 907.00±276.58b | 83.01±2.52a |
PM×LA | 30.12±5.58a | 37.95±7.58a | 0.40±0.03a | 0.38±0.08a | 1 179.75±180.58a | 1 288.42±301.29a | 79.64±3.22a |
PA | 28.87±4.28b | 70.98±6.35b | 0.78±0.06a | 1.40±0.06b | 1 022.18±258.66b | 2 249.64±260.03b | 79.33±2.21a |
PA×LA | 38.17±8.72a | 87.44±5.72a | 0.73±0.08a | 1.61±0.28a | 1 274.75±380.28a | 2 874.00±139.29a | 77.75±3.04a |
Table 3
Root morphology traits of two pine seedling after inoculation with Lactarius akahatsu"
处理 Treatment | 比根长 Specific root length/ (cm·g?1) | 组织密度 Root tissue density/ (g·cm?3) | 比表面积 Specific root surface area/(cm2·g?1) | 根冠比 Root shoot ratio |
PM | 146.85±5.60b | 0.44±0.03a | 187.12±7.20b | 1.04±0.32a |
PM×LA | 213.20±10.21a | 0.37±0.10a | 268.61±12.34a | 0.82±0.21b |
PA | 61.42±3.81a | 0.34±0.06a | 151.02±4.95a | 0.91±0.23a |
PA×LA | 60.59±6.10a | 0.39±0.12a | 138.80±6.33b | 0.85±0.15a |
Fig.5
Effects of Lactarius akahatsu inoculation on the root vigor and cation exchange capacity of seedlings of two pine species PM and PA represents Pinus massoniana and Pinus armandii seedlings with non-inoculated Lactarius akahatsu, PM×LA and PA×LA represents Pinus massoniana and Pinus armandii seedlings with inoculated Lactarius akahatsu. Different lowercase letters indicate significant differences in the same indicator at the 0.05 level for different treatments."
Fig.6
Effects of Lactarius akahatsu inoculation on the seedling root metabolites of two pine species PM and PA represents Pinus massoniana and Pinus armandii seedlings with non-inoculated Lactarius akahatsu, PM×LA and PA×LA represents Pinus massoniana and Pinus armandii seedlings with inoculated Lactarius akahatsu. Different lowercase letters indicate significant differences in the same indicator at the 0.05 level for different treatments."
程 鑫, 吴纯泽, 韦庆钰, 等. 水曲柳丛枝菌根真菌接菌苗对干旱胁迫的生长和生理响应. 林业科学, 2023, 59 (2): 58- 66.
doi: 10.11707/j.1001-7488.LYKX20220348 |
|
Cheng X, Wu C Z, Wei Q Y, et al. Growth and physiological responses of Fraxinus mandshurica seedlings inoculated with arbuscular mycorrhizal fungi to drought stress. Scientia Silvae Sinicae, 2023, 59 (2): 58- 66.
doi: 10.11707/j.1001-7488.LYKX20220348 |
|
董 硕, 马 群, 阿拉木萨, 等. 菌根菌剂对科尔沁沙地3种常见造林绿化树种幼苗生长的影响. 生态学杂志, 2023, 42 (2): 291- 297. | |
Dong S, Ma Q, Almusa, et al. Effects of mycorrhizal inoculants on seedling growth of three common afforestation tree species in Horqin Sand Land. Chinese Journal of Ecology, 2023, 42 (2): 291- 297. | |
冯万艳, 赵燕珍, 谭健晖, 等. 马尾松与粘盖乳牛肝菌菌根共生体形成过程. 菌物学报, 2019, 38 (10): 1620- 1630. | |
Feng W Y, Zhao Y Z, Tan J H, et al. Establishment of Pinus massoniana-Suillus bovinus symbiosis. Mycosystema, 2019, 38 (10): 1620- 1630. | |
高晓磊, 张丽仔, 唐 窈, 等. 接种外生菌根真菌对不同种源栓皮栎幼苗生长和生理特征的影响. 中南林业科技大学学报, 2022, 42 (11): 63- 70. | |
Gao X L, Zhang L Z, Tang Y, et al. Effects of ectomycorrhizal fungi inoculation on the growth and physiological characteristics of Quercus variabilis from different provenances. Journal of Central South University of Forestry & Technology, 2022, 42 (11): 63- 70. | |
郝龙飞, 李星月, 武晓倩, 等. 施肥方式及接种菌根真菌对1年生油松苗木根系构型的影响. 西北林学院学报, 2021, 36 (3): 168- 174.
doi: 10.3969/j.issn.1001-7461.2021.03.25 |
|
Hao L F, Li X Y, Wu X Q, et al. Responses of the root system architecture of one-year-old Pinus tabuliformis seedlings to fertilization and ectomycorrhizal fungus inoculation. Journal of Northwest Forestry University, 2021, 36 (3): 168- 174.
doi: 10.3969/j.issn.1001-7461.2021.03.25 |
|
贾林巧, 陈光水, 张礼宏, 等. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应. 应用生态学报, 2021, 32 (2): 529- 537. | |
Jia L Q, Chen G S, Zhang L H, et al. Plastic responses of fine root morphology and architecture traits to nitrogen addition in ectomycorrhizal and arbuscular mycorrhizal tree species in an evergreen broadleaved forest. Chinese Journal of Applied Ecology, 2021, 32 (2): 529- 537. | |
姜清彬, 仲崇禄, 陈 羽, 等. 红菇菌根食用菌接种马尾松苗期的共生效应研究. 中南林业科技大学学报, 2016, 36 (8): 6- 9,38. | |
Jiang Q B, Zhong C L, Chen Y, et al. Study on inoculating Russula fungi with Pinus massoniana seedling. Journal of Central South University of Forestry & Technology, 2016, 36 (8): 6- 9,38. | |
李 敏, 赵熙州, 王好运, 等. 干旱胁迫及外生菌根菌对马尾松幼苗根系形态及分泌物的影响. 林业科学, 2022, 58 (7): 63- 72.
doi: 10.11707/j.1001-7488.20220707 |
|
Li M, Zhao X Z, Wang H Y, et al. Effects of drought stress and ectomycorrhizal fungi on the root morphology and exudates of Pinus massoniana seedlings. Scientia Silvae Sinicae, 2022, 58 (7): 63- 72.
doi: 10.11707/j.1001-7488.20220707 |
|
祁金玉, 邓继峰, 尹大川, 等. 外生菌根菌对油松幼苗抗氧化酶活性及根系构型的影响. 生态学报, 2019, 39 (8): 2826- 2832. | |
Qi J Y, Deng J F, Yin D C, et al. Effects of inoculation of exogenous mycorrhizal fungi on the antioxidant and root configuration enzyme activity of Pinus tabulaeformis seedlings. Acta Ecologica Sinica, 2019, 39 (8): 2826- 2832. | |
孙佳琦, 曹文琪, 冷平生, 等. 接种4种外生菌根真菌对槲树幼苗生长、光合及营养元素含量的影响. 中南林业科技大学学报, 2021, 41 (10): 67- 74,101. | |
Sun J Q, Cao W Q, Leng P S, et al. Effect of four ectomycorrhizal fungi inoculation on the growth, photosynthesis, and nutrient element content of Quercus dentata seedlings. Journal of Central South University of Forestry & Technology, 2021, 41 (10): 67- 74,101. | |
王 策, 谢宏鑫, 刘润进, 等. 丛枝菌根真菌调控根系构型与矿质元素平衡提高西瓜植株耐盐性的研究. 菌物学报, 2021, 40 (10): 2800- 2810. | |
Wang C, Xie H X, Liu R J, et al. Salt tolerance of watermelon plants through AM fungus adjusting root architecture and mineral element balance. Mycosystema, 2021, 40 (10): 2800- 2810. | |
王 迪, HALLIan Robert, 何晓兰, 等. 人工合成松乳菇菌根及杂菌侵染宿主的形态学观察和分子鉴定. 食用菌学报, 2021, 28 (3): 129- 134. | |
Wang D, Robert H, He X L, et al. Morphological observation of synthesized ectomycorrhizae betweeen Lactarius deliciosus and three Pinus species and molecular identification of contaminating species. Acta Edulis Fungi, 2021, 28 (3): 129- 134. | |
王 冉, Guerin-Laguette Alexis, 于富强. 两种乳菇菌丝生长的最适培养基与菌根合成. 菌物学报, 2020, 39 (7): 1346- 1355. | |
Wang R, Alexis G, Yu F Q. Optimum media for hyphal growth and mycorrhizal synthesis of two Lactarius species. Mycosystema, 2020, 39 (7): 1346- 1355. | |
温祝桂, 朱小梅, 刘 冲, 等. 两株外生菌根真菌对盐渍土壤中黑松幼苗生长的影响. 中南林业科技大学学报, 2019, 39 (4): 22- 27. | |
Wen Z G, Zhu X M, Liu C, et al. Effects of two ectomycorrhizal fungi on growth of Pinus thunbergii seedlings planted in saline soil. Journal of Central South University of Forestry & Technology, 2019, 39 (4): 22- 27. | |
阎秀峰, 王 琴. 接种外生菌根对辽东栎幼苗生长的影响. 植物生态学报, 2002, 26 (6): 701- 707.
doi: 10.3321/j.issn:1005-264X.2002.06.011 |
|
Yan X F, Wang Q. Effects of ectomycorrhizal inoculation on the seedling growth of Quercus liaotungensis. Acta Phytoecologica Sinica, 2002, 26 (6): 701- 707.
doi: 10.3321/j.issn:1005-264X.2002.06.011 |
|
尹大川, 祁金玉. 褐环乳牛肝菌对樟子松生长的调控——影响激素和代谢产物含量. 菌物学报, 2021, 40 (10): 2811- 2820. | |
Yin D C, Qi J Y. Regulation of Suillus luteus on the growth of Pinus sylvestris var. mongolica: influencing the hormone and metabolite content of the seedlings. Mycosystema, 2021, 40 (10): 2811- 2820. | |
张可可, 蒋德明, 余海滨, 等. 接种菌根菌剂对科尔沁沙地4种造林幼苗生长特性的影响. 生态学杂志, 2017, 36 (7): 1791- 1800. | |
Zhang K K, Jiang D M, Yu H B, et al. Impacts of mycorrhizal fungi inoculum on growth characteristics of four kinds of afforestation seedlings in Horqin sandy land, China. Chinese Journal of Ecology, 2017, 36 (7): 1791- 1800. | |
张倩倩, 黄 青. 基于香草醛-高氯酸显色反应测定灵芝三萜的方法探讨与修正. 菌物学报, 2018, 37 (12): 1792- 1801. | |
Zhang Q Q, Huang Q. Revised method for determining Ganoderma lingzhi terpenoids by UV-Vis spectrophotometry based on colorimetric vanillin perchloric acid reaction. Mycosystema, 2018, 37 (12): 1792- 1801. | |
周晓莹, 梁 玉, 李红丽, 等. 双色蜡蘑对黑松幼苗生长量及其根系形态的影响. 西北植物学报, 2018, 38 (6): 1153- 1159.
doi: 10.7606/j.issn.1000-4025.2018.06.1153 |
|
Zhou X Y, Liang Y, Li H L, et al. Effect of Laccaria bicolor on growth and root morphology of Pinus thunbergii seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38 (6): 1153- 1159.
doi: 10.7606/j.issn.1000-4025.2018.06.1153 |
|
Corkidi L, Rowland D L, Johnson N C, et al. Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil, 2002, 240 (2): 299- 310.
doi: 10.1023/A:1015792204633 |
|
Deng M F, Hu S J, Guo L L, et al. Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Science Advances, 2023, 9 (3): eadd4468.
doi: 10.1126/sciadv.add4468 |
|
Ditengou F A, Müller A, Rosenkranz M, et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Communications, 2015, 6, 6279.
doi: 10.1038/ncomms7279 |
|
Dong X Y, Wang H F, Gu J C, et al. Root morphology, histology and chemistry of nine fern species (pteridophyta) in a temperate forest. Plant and Soil, 2015, 393 (1): 215- 227. | |
Genre A, Lanfranco L, Perotto S, et al. Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 2020, 18, 649- 660.
doi: 10.1038/s41579-020-0402-3 |
|
Hawkins H J, Cargill R I M, van Nuland M E, et al. Mycorrhizal mycelium as a global carbon pool. Current Biology, 2023, 33 (11): R560- R573.
doi: 10.1016/j.cub.2023.02.027 |
|
Hazard C, Kruitbos L, Davidson H, et al. Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality. New Phytologist, 2017, 213 (2): 852- 863.
doi: 10.1111/nph.14184 |
|
Jia S X, Wang Z Q, Li X P, et al. N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Plant and Soil, 2010, 333 (1): 325- 336. | |
Kou L, Guo D L, Yang H, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China. Plant and Soil, 2015, 391 (1): 207- 218. | |
Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555, 94- 97.
doi: 10.1038/nature25783 |
|
Rüger L, Ganther M, Freudenthal J, et al. Root cap is an important determinant of rhizosphere microbiome assembly. New Phytologist, 2023, 239 (4): 1434- 1448.
doi: 10.1111/nph.19002 |
|
Sun L J, Ataka M, Han M G, et al. Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist, 2021, 229 (1): 259- 271.
doi: 10.1111/nph.16865 |
|
Tian B L, Pei Y C, Huang W, et al. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. The ISME Journal, 2021, 15 (7): 1919- 1930.
doi: 10.1038/s41396-021-00894-1 |
|
Valenzuela-Estrada L R, Vera-Caraballo V, Ruth L E, et al. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). American Journal of Botany, 2008, 95 (12): 1506- 1514.
doi: 10.3732/ajb.0800092 |
|
Vayssières A, Pěnčík A, Felten J, et al. Development of the poplar-Laccaria bicolor ectomycorrhiza modifies root auxin metabolism, signaling, and response. Plant Physiology, 2015, 169 (1): 890- 902.
doi: 10.1104/pp.114.255620 |
|
Wang L X, Chen M X, Lam P Y, et al. Multifaceted roles of flavonoids mediating plant-microbe interactions. Microbiome, 2022, 10 (1): 233.
doi: 10.1186/s40168-022-01420-x |
|
Zhuang Y C, Zhang C, Ou L L, et al. Determination of total flavonoids in leaves of Paliurus ramosissimus and orthogonal experiment optimization process. Medicinal Plant, 2018, 9 (2): 40- 43. |
[1] | Shen Xiwei, Zeng Bin, Ge Mengting, Wang Jingxian. Analysis of Odor-Active Compounds from Pinus massoniana as Materials in Landscape Design Based on GC-MS-O Technology [J]. Scientia Silvae Sinicae, 2024, 60(9): 159-169. |
[2] | Yuan Li,Zhu Li,Yamin Du,Jiali Jiang. Longitudinal Tensile Mechanical Behavior of Earlywood and Latewood of Pinus massoniana in the Hydrothermal Environment [J]. Scientia Silvae Sinicae, 2024, 60(8): 184-192. |
[3] | Ao Liu,Jiazheng Wang,Sihang Lu,Feiya Lei,Hongtao Ning,Yu Teng,Shouzhong Li. Population Dynamics and Driving Mechanism of Pinus massoniana in Coniferous and Broad-Leaved Mixed Forests with Different Mixing Ratios in Changting Ecological Restoration Area [J]. Scientia Silvae Sinicae, 2024, 60(5): 89-97. |
[4] | Yonglin Zheng,Yunqi Wang,Xiaoxiao Xu,Yujie Wang,Yaoming Li. The Acid Rain Response of Radial Growth of Pinus massoniana and Machilus nanmu in Jinyun Mountains of Chongqing [J]. Scientia Silvae Sinicae, 2024, 60(1): 58-67. |
[5] | Peidong Yan,Peng Li,Zhangqi Yang,Suili Huang,Yongbin Zhou,Tianwang Ling. Differentiation Characteristics and Their Effects on Productivity with Different Planting Densities of Pinus massoniana Plantations [J]. Scientia Silvae Sinicae, 2023, 59(10): 66-75. |
[6] | Jinlian Huang,Hongxia Cui,Wanpeng Tang,Chen Hu,Zhiyuan Ma,Jingpin Lei. Effects of Insect Disturbance on Characteristics of Soil Enzyme Activity and C∶N∶P Stoichiometry in Pinus armandii Forest [J]. Scientia Silvae Sinicae, 2023, 59(10): 128-137. |
[7] | Sisheng Luo,Bizhen Luo,Shujing Wei,Haiqing Hu,Xiaochuan Li,Zhenshi Wang,Yufei Zhou,Zhao Song,Yingxia Zhong. Characteristics of Soil Carbon Pool in Pinus massoniana Forest One Year after Moderate Forest Fires [J]. Scientia Silvae Sinicae, 2022, 58(9): 25-35. |
[8] | Yanyan Ni,Zunji Jian,Jin Xu,Lixiong Zeng,Honghua Ruan,Lei Lei,Wenfa Xiao,Maihe Li. Latitudinal Variation of the Size and Allocation of Non-Structural Carbon in Pinus massoniana [J]. Scientia Silvae Sinicae, 2022, 58(8): 41-52. |
[9] | Min Li, Xizhou Zhao, Haoyun Wang, Zhongke Lu, Guijie Ding. Effects of Drought Stress and Ectomycorrhizal Fungi on the Root Morphology and Exudates of Pinus massoniana Seedlings [J]. Scientia Silvae Sinicae, 2022, 58(7): 63-72. |
[10] | Yuxin Geng,Hongjiao Li,Jianwei Zheng,Qin Zhang,Lina Yu,Jiaqiu Li,Baohui Li. Difference of Secondary Metabolites in Spines of Gleditsia sinensis and Gleditsia microphylla [J]. Scientia Silvae Sinicae, 2022, 58(4): 82-94. |
[11] | Hailian Xue,Xianglin Tian,Tianjian Cao. Optimizing Parameters of a Process-Based Model for Pinus armandii: A Compromise between Empirical and Process-Based Modelling Approaches [J]. Scientia Silvae Sinicae, 2021, 57(9): 21-33. |
[12] | Zijing Zhou,Fuhua Fan,Xianwen Shang,Huijuan Qin,Conghui Wang,Guijie Ding,Jianhui Tan. Effects of Exogenous IAA on Stem Secondary Growth of Pinus massoniana Seedlings [J]. Scientia Silvae Sinicae, 2021, 57(9): 42-51. |
[13] | Haiyang Wang,Qianli Ma. Adsorption Properties and Mechanisms of Pinus massoniana Bark Nano-Lignocellulose Aerogel Adsorbent for Cr3+/Cu2+/Pb2+/Ni2+ [J]. Scientia Silvae Sinicae, 2021, 57(7): 166-174. |
[14] | Linfeng Ye,Yan Li,Zhongyuan Wang,Shitong Lu,Tiantian Pan,Sen Chen,Jiangbo Xie. Efficiency-Safety Relationships of Hydraulic Conducting System for Branch and Root of Three Pinus Species Growing in Humid Area [J]. Scientia Silvae Sinicae, 2021, 57(7): 194-204. |
[15] | Yunxing Bai,Yunchao Zhou,Xunyuan Zhang,Jiaojiao Du. Water Conservation Capacity of Litter and Soil in Mixed Plantation of Pinus massoniana and Broadleaved Trees [J]. Scientia Silvae Sinicae, 2021, 57(11): 24-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||