Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (6): 1-11.doi: 10.11707/j.1001-7488.LYKX20220508
Previous Articles Next Articles
Hongxing Wang,Xiaomei Sun,Dongsheng Chen,Chunyan Wu,Shougong Zhang*
Received:
2022-07-29
Accepted:
2023-05-09
Online:
2023-06-25
Published:
2023-08-08
Contact:
Shougong Zhang
CLC Number:
Hongxing Wang,Xiaomei Sun,Dongsheng Chen,Chunyan Wu,Shougong Zhang. Effects of Moderate Thinning on Biological Diversity and Soil Multifunctionality in Larix kaempferi Plantations[J]. Scientia Silvae Sinicae, 2023, 59(6): 1-11.
Table 1
Basic situation of sample plots"
间伐强度 Thinning intensity | 平均胸径 Average DBH/cm | 平均树高 Average height/m | 郁闭度 Canopy density | 保留密度 Density/(trees·hm?2) | 坡向 Aspect | 海拔 Altitude/m | 坡度 Slope/(°) |
对照 CK | 12.0 ± 0.2 | 15.5 ± 0.2 | 0.89 ± 0.02 | 2 000 ± 32 | 西北Northwest | 375 | 8° |
30%间伐强度30% thinning(T30) | 13.0 ± 0.2 | 16.3 ± 0.4 | 0.78 ± 0.02 | 1 404 ± 41 | 西北Northwest | 379 | 10° |
45%间伐强度45% thinning(T45) | 13.7 ± 0.2 | 16.7 ± 0.3 | 0.69 ± 0.01 | 1 106 ± 41 | 西北Northwest | 391 | 11° |
Table 2
Effects of thinning and season on soil properties and multifunctionality"
季节 Season | 处理 Thinning | 土壤含水量 SWC (%) | 土壤有机碳 SOC/(g·kg?1) | 全氮 TN/(g·kg?1) | 全磷 TP/(g·kg?1) | 可溶性碳 DOC/(g·kg?1) | 铵态氮 NH4+-N/(mg·kg?1) | 硝态氮 NO3?-N/(mg·kg?1) | 有效磷 AP/(mg·kg?1) |
春 Spring | CK | 25.91 ± 0.83b | 38.38 ± 0.86a | 3.16 ± 0.24a | 0.50 ± 0.01a | 0.41 ± 0.06a | 15.49 ± 1.18ab | 9.84 ± 0.93a | 7.19 ± 1.16a |
T30 | 26.80 ± 0.90b | 37.26 ± 2.44a | 3.01 ± 0.23a | 0.49 ± 0.02a | 0.41 ± 0.04a | 11.54 ± 2.81b | 10.38 ± 1.51a | 5.36 ± 1.99a | |
T45 | 28.65 ± 0.84a | 39.62 ± 2.27a | 3.26 ± 0.21a | 0.51 ± 0.01a | 0.46 ± 0.06a | 16.31 ± 1.44a | 10.82 ± 0.69a | 6.03 ± 1.66a | |
夏 Summer | CK | 13.24 ± 0.87b | 37.33 ± 0.53a | 3.10 ± 0.20a | 0.50 ± 0.01a | 0.42 ± 0.02b | 10.71 ± 0.74b | 5.57 ± 0.65b | 6.10 ± 0.70a |
T30 | 13.25 ± 0.51b | 38.54 ± 2.46a | 3.04 ± 0.10a | 0.49 ± 0.01a | 0.46 ± 0.02ab | 7.30 ± 0.94c | 4.46 ± 0.26c | 3.60 ± 1.02b | |
T45 | 17.31 ± 0.27a | 38.78 ± 1.69a | 3.19 ± 0.14a | 0.50 ± 0.02a | 0.48 ± 0.04a | 12.57 ± 1.15a | 8.58 ± 0.51a | 6.63 ± 1.03a | |
秋 Autumn | CK | 19.10 ± 0.48b | 37.74 ± 2.24a | 2.99 ± 0.05a | 0.50 ± 0.02a | 0.44 ± 0.04a | 7.59 ± 0.13b | 8.94 ± 0.62a | 6.10 ± 1.16a |
T30 | 19.89 ± 0.42b | 37.54 ± 1.80a | 3.10 ± 0.18a | 0.50 ± 0.01a | 0.39 ± 0.03a | 7.94 ± 0.18ab | 6.08 ± 1.05b | 7.31 ± 0.84a | |
T45 | 22.66 ± 0.76a | 38.86 ± 1.81a | 3.05 ± 0.17a | 0.51 ± 0.02a | 0.45 ± 0.05a | 10.30 ± 0.29a | 8.50 ± 0.65a | 8.52 ± 0.70a | |
季节 Season | 处理 Thinning | 脲酶 URE/ (mg·g?124h?1) | β-葡萄糖苷酶 βG/ (μmol·g?1h?1) | 纤维素水解酶 CBH/ (μmol·g?1h?1) | 几丁质酶 NAG/ (μmol·g?1h?1) | 多酚氧化酶 PPO/ (μmol·g?1h?1) | 过氧化物酶 POD/ (μmol·g?1h?1) | 酸性磷酸酶 ACP/ (μmol·g?1·h?1) | 土壤多功 能性 SMF |
春 Spring | CK | 6.27±0.83a | 0.55±0.04a | 0.21±0.01a | 0.14±0.01a | 0.14±0.03a | 0.72±0.04c | 2.80±0.05a | 0.75±0.01a |
T30 | 5.56±1.02a | 0.53±0.01b | 0.15±0.01b | 0.11±0.02b | 0.07±0.01b | 0.91±0.01b | 2.72±0.07a | 0.67±0.01b | |
T45 | 6.39±0.85a | 0.56±0.02a | 0.20±0.01a | 0.16±0.01a | 0.15±0.04a | 1.07±0.02a | 2.80±0.04a | 0.78±0.02a | |
夏 Summer | CK | 5.47±1.15a | 0.45±0.02b | 0.17±0.01a | 0.18±0.01b | 0.23±0.03b | 0.82±0.05b | 2.44±0.05b | 0.67±0.01b |
T30 | 5.20±0.53a | 0.42±0.03b | 0.13±0.01b | 0.15±0.01b | 0.21±0.06b | 0.79±0.13b | 2.34±0.08b | 0.60±0.02c | |
T45 | 6.29±0.52a | 0.49±0.01a | 0.17±0.02a | 0.22±0.02a | 0.31±0.03a | 0.96±0.05a | 2.66±0.05a | 0.74±0.01a | |
秋 Autumn | CK | 4.90±0.67a | 0.32±0.01a | 0.09±0.02a | 0.09±0.02a | 0.26±0.02b | 0.74±0.05b | 2.18±0.04a | 0.60±0.01b |
T30 | 5.05±0.30a | 0.29±0.02b | 0.09±0.01a | 0.10±0.01a | 0.32±0.01ab | 0.79±0.07b | 2.16±0.05a | 0.61±0.01b | |
T45 | 4.94±0.50a | 0.34±0.02a | 0.08±0.01a | 0.11±0.01a | 0.34±0.06a | 0.92±0.16a | 2.22±0.04a | 0.68±0.01a |
Fig.2
Effects of thinning and season on the relative abundance of dominant soil fungi (a, b) and bacteria (c, d) phylum and class level Different letters indicate significant differences among the three thinning treatments in the same season (P < 0.05) and asterisks indicate the statistical significance (*** P < 0.001; ** P < 0.01; * P < 0.05 and ns P > 0.05)."
Fig.3
Effects of thinning and season on soil fungal and bacterial diversity Different letters indicate significant differences among the three thinning treatments in the same season (P < 0.05) and asterisks indicate the statistical significance (*** P < 0.001; ** P < 0.01; * P < 0.05 and ns P > 0.05)."
Fig.6
Structural equation model showing the direct and indirect effects of the thinning, season and microbes on soil multifunctionality The solid line and the dashed line represent the significant path and the insignificant path, respectively. Standardized coefficients are presented for each path. Letters denote groupings via post-hoc tests."
陈慧清, 李晓晨, 于学峰, 等. 土壤生态系统微生物多样性技术研究进展. 地球与环境, 2018, 46 (2): 204- 209.
doi: 10.14050/j.cnki.1672-9250.2018.46.026 |
|
Chen H Q, Li X C, Yu X F, et al. A review on technique progresses of microbial diversity in soil ecosystem. Earth and Environment, 2018, 46 (2): 204- 209.
doi: 10.14050/j.cnki.1672-9250.2018.46.026 |
|
李香真, 郭良栋, 李家宝, 等. 中国土壤微生物多样性监测的现状和思考. 生物多样性, 2016, 24 (11): 1240- 1248.
doi: 10.17520/biods.2015345 |
|
Li X Z, Guo L D, Li J B, et al. Soil microbial diversity observation in China: current situation and future consideration. Chinese Journal of Plant Ecology, 2016, 24 (11): 1240- 1248.
doi: 10.17520/biods.2015345 |
|
徐雪蕾, 孙玉军, 周 华, 等. 间伐强度对杉木人工林林下植被和土壤性质的影响. 林业科学, 2019, 55 (3): 1- 12.
doi: 10.11707/j.1001-7488.20190301 |
|
Xu X L, Sun Y J, Zhou H, et al. Effects of thinning intensity on understory growth and soil properties in Chinese fir plantation. Scientia Silvae Sinicae, 2019, 55 (3): 1- 12.
doi: 10.11707/j.1001-7488.20190301 |
|
Ahmad B, Wang Y H, Hao J, et al. Optimizing stand structure for tradeoffs between overstory and understory vegetation biomass in a larch plantation of Liupan Mountains, northwest China. Forest Ecology and Management, 2019, 443 (4): 3- 50. | |
Ahmad B, Wang Y H, Hao J, et al. Optimizing stand structure for trade-offs between overstory timber production and understory plant diversity: a case-study of a larch plantation in northwest China. Land Degradation and Development, 2018, 29 (9): 2998- 3008.
doi: 10.1002/ldr.3070 |
|
Anderson T. Microbial eco-physiological indicators to assess soil quality. Agriculture Ecosystems and Environment, 2003, 98 (1/3): 285- 293. | |
Ares A, Neill A R, Puettmann K J. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. Forest Ecology and Management, 2010, 260 (7): 1104- 1113.
doi: 10.1016/j.foreco.2010.06.023 |
|
Baldrian P, Šnajdr J, Merhautová V, et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biology and Biochemistry, 2013, 56, 60- 68.
doi: 10.1016/j.soilbio.2012.01.020 |
|
Bastida F, Torres I F, Andrés-Abellán M, et al. Differential sensitivity of total and active soil microbial communities to drought and forest management. Global Change Biology, 2017, 23 (10): 4185- 4203.
doi: 10.1111/gcb.13790 |
|
Bengtsson-Palme J, Ryberg M, Hartmann M, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 2013, 4 (10): 914- 919. | |
Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 2009, 15 (4): 808- 824.
doi: 10.1111/j.1365-2486.2008.01681.x |
|
Burton J, Chen C R, Xu Z H, et al. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. Journal of Soils and Sediments, 2010, 10 (7): 1267- 1277.
doi: 10.1007/s11368-010-0238-y |
|
Caporaso J G, Lauber C L, Walters W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 2012, 6 (8): 1621- 1624.
doi: 10.1038/ismej.2012.8 |
|
Clemmensen K, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 2013, 339 (6127): 1615- 1618.
doi: 10.1126/science.1231923 |
|
Crowther T W, Boddy L, Jones T H. Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME Journal, 2012, 6 (11): 1992- 2001.
doi: 10.1038/ismej.2012.53 |
|
Dai X, Fu X, Kou L, et al. C: N: P stoichiometry of rhizosphere soils differed significantly among overstory trees and understory shrubs in plantations in subtropical China. Canadian Journal of Forest Research, 2018, 48 (11): 1398- 1405.
doi: 10.1139/cjfr-2018-0095 |
|
Dang P, Gao Y, Liu J. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Science of the Total Environment, 2018, 630, 171- 180.
doi: 10.1016/j.scitotenv.2018.02.197 |
|
De Vries F T, Griffiths R I, Mark B, et al. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9 (1): 3033.
doi: 10.1038/s41467-018-05516-7 |
|
Delgado-Baquerizo M, Eldridge D J, Ochoa V, et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letter, 2017, 20 (10): 1295- 1305.
doi: 10.1111/ele.12826 |
|
Delgado-Baquerizo M, Reich P B, Trivedi C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 2020, 4 (2): 210- 220.
doi: 10.1038/s41559-019-1084-y |
|
Ganatsios H P, Tsioras P A, Pavlidis T. Water yield changes as a result of silvicultural treatments in an oak ecosystem. Forest Ecology and Management, 2010, 260 (8): 1367- 1374.
doi: 10.1016/j.foreco.2010.07.033 |
|
Gardes M, Bruns T D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology, 1993, 2 (2): 113- 118.
doi: 10.1111/j.1365-294X.1993.tb00005.x |
|
Gavinet J, Ourcival J M, Gauzere J, et al. Drought mitigation by thinning: Benefits from the stem to the stand along 15 years of experimental rainfall exclusion in a holm oak coppice. Forest Ecology and Management, 2020, 473, 118266.
doi: 10.1016/j.foreco.2020.118266 |
|
Giguère-Tremblay R, Laperriere G, de Grandpré A, et al. Boreal forest multifunctionality is promoted by low soil organic matter content and high regional bacterial biodiversity in northeastern Canada. Forests, 2020, 11 (12): 1- 18. | |
Guhr A, Borken W, Spohn M, et al. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (47): 14647- 14651.
doi: 10.1073/pnas.1514435112 |
|
Haughian S R, Frego K A. Short-term effects of three commercial thinning treatments on diversity of understory vascular plants in white spruce plantations of northern New Brunswick. Forest Ecology and Management, 2016, 370, 45- 55.
doi: 10.1016/j.foreco.2016.03.055 |
|
Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality. Nature, 2007, 448 (7150): 188- 190.
doi: 10.1038/nature05947 |
|
Jansson J K, Hofmockel K S. Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18 (1): 35- 46.
doi: 10.1038/s41579-019-0265-7 |
|
Jiménez M N, Spotswood E N, Cañadas E M, et al. Stand management to reduce fire risk promotes understorey plant diversity and biomass in a semi-arid Pinus halepensis plantation . Applied Vegetation Science, 2015, 18 (3): 467- 480.
doi: 10.1111/avsc.12151 |
|
Jing X, Sanders N J, Shi Y, et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 2015, 6, 8159.
doi: 10.1038/ncomms9159 |
|
Karlen D L, Mausbach M J, Doran J W, et al. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 1997, 61 (1): 4- 10.
doi: 10.2136/sssaj1997.03615995006100010001x |
|
Kebli H, Brais S, Kernaghan G, et al. Impact of harvesting intensity on wood-inhabiting fungi in boreal aspen forests of Eastern Canada. Forest Ecology and Management, 2012, 279, 45- 54.
doi: 10.1016/j.foreco.2012.05.028 |
|
Kim S, Li G, Han S H, et al. Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora Sieb . et Zucc. forests after 7 years. Annals of Forest Science, 2018, 75 (1): 13. | |
Kim S, Li G, Han S H, et al. Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: Influential factors for the site-specific changes. Science of the Total Environment, 2019, 651, 2068- 2079.
doi: 10.1016/j.scitotenv.2018.10.153 |
|
Kyaschenko J, Clemmensen K E, Karltun E, et al. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecology Letters, 2017, 20 (12): 1546- 1555.
doi: 10.1111/ele.12862 |
|
Li J, Delgado-Baquerizo M, Wang J T, et al. Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biology and Biochemistry, 2019, 136, 107526.
doi: 10.1016/j.soilbio.2019.107526 |
|
Li M H, Guo J J, Ren T, et al. 2021. Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agriculture, Ecosystems and Environment, 319: 107550. | |
Lin W R, Wang P H, Chen W C, et al. Responses of soil fungal populations and communities to the thinning of Cryptomeria japonica forests . Microbes and Environments, 2016, 31 (1): 19- 26.
doi: 10.1264/jsme2.ME15127 |
|
Lladó S, López-Mondéjar R, Baldrian P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 2017, 81 (2): 1- 27. | |
Ma J Y, Kang F F, Cheng X Q, et al. Moderate thinning increases soil organic carbon in Larix principis–rupprechtii (Pinaceae)plantations . Geoderma, 2018, 329, 118- 128.
doi: 10.1016/j.geoderma.2018.05.021 |
|
Ma S, Concilio A, Oakley B, et al. Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. Forest Ecology and Management, 2010, 259 (5): 904- 915.
doi: 10.1016/j.foreco.2009.11.030 |
|
Mohan J E, Cowden C C, Baas P, et al. Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecology, 2014, 10 (1): 3- 19. | |
Mosca E, Montecchio L, Sella L, et al. Short-term effect of removing tree competition on the ectomycorrhizal status of a declining pedunculate oak forest(Quercus robur L . ). Forest Ecology and Management, 2007, 244, 129- 140.
doi: 10.1016/j.foreco.2007.04.019 |
|
Mushinski R M, Gentry T J, Boutton T W. Organic matter removal associated with forest harvest leads to decade scale alterations in soil fungal communities and functional guilds. Soil Biology and Biochemistry, 2018, 127, 127- 136.
doi: 10.1016/j.soilbio.2018.09.019 |
|
Niu X Y, Sun X M, Chen D S, et al. Mixing litter from Larix kaempferi (Lamb . ) Carr. and broad-leaved trees enhances decomposition by different mechanisms in temperate and subtropical alpine regions of China. Plant and soil, 2020, 452 (1/2): 43- 60. | |
Overby S T, Owen S M, Hart S C. Soil microbial community resilience with tree thinning in a 40-year-old experimental ponderosa pine forest. Applied Soil Ecology, 2015, 93, 1- 10.
doi: 10.1016/j.apsoil.2015.03.012 |
|
Parladé J, Queralt M, Pera J, et al. Temporal dynamics of soil fungal communities after partial and total clear-cutting in a managed Pinus sylvestris stand . Forest Ecology and Management, 2019, 449, 117456.
doi: 10.1016/j.foreco.2019.117456 |
|
Peco B, Navarro E, Carmona C P, et al. 2017. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agriculture, Ecosystems and Environment, 249: 215–225. | |
Preece C, Verbruggen E, Liu L. Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biology and Biochemistry, 2019, 131 (6): 28- 39. | |
Rasmussen A L, Brewer J S, Jackson C R, et al. Tree thinning and fire affect ectomycorrhizal fungal communities and enzyme activities. Ecosphere, 2018, 9, e02471. | |
Romaniuk R, Giuffré L, Costantini A, et al. Assessment of soil microbial diversity measurements as indicators of soil functioning in organic and conventional horticulture systems. Ecological Indicators, 2011, 11 (5): 1345- 1353.
doi: 10.1016/j.ecolind.2011.02.008 |
|
Singh A K, Rai A, Banyal R, et al. Plant community regulates soil multifunctionality in a tropical dry forest. Ecological Indicators, 2018, 95, 953- 963.
doi: 10.1016/j.ecolind.2018.08.030 |
|
Treseder K K, Holden S R. Fungal carbon sequestration. Science, 2013, 340 (6127): 1528- 1529. | |
Treseder K K, Marusenko Y, Romero-Olivares A L, et al. Experimental warming alters potential function of the fungal community in boreal forest. Global Change Biology, 2016, 22 (10): 3395- 3404.
doi: 10.1111/gcb.13238 |
|
Urbanová M, Šnajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology and Biochemistry, 2015, 84, 53- 64.
doi: 10.1016/j.soilbio.2015.02.011 |
|
Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecological Applications, 2004, 14 (4): 1172- 1177.
doi: 10.1890/03-5120 |
|
Wang D, Olatunji O A, Xiao J L. Thinning increased fine root production, biomass, turnover rate and understory vegetation yield in a Chinese fir plantation. Forest Ecology and Management, 2019, 444, 92- 100. | |
Warren C R, McGrath J F, Adams M A. Water availability and carbon isotope discrimination in conifers. Oecologia, 2001, 127 (4): 476- 486.
doi: 10.1007/s004420000609 |
|
Weng S H, Kuo S R, Guan B T, et al. Microclimatic responses to different thinning intensities in a Japanese cedar plantation of northern Taiwan. Forest Ecology and Management, 2007, 241, 91- 100.
doi: 10.1016/j.foreco.2006.12.027 |
|
Xu H D, Yu M K, Cheng X R. Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations. Ecological Indicators, 2021a, 129, 107932.
doi: 10.1016/j.ecolind.2021.107932 |
|
Xu M, Li X L, Kuyper T W, et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biology, 2021b, 27 (10): 2061- 2075.
doi: 10.1111/gcb.15553 |
|
Zhang X Z, Guan D X, Li W B, et al. The effects of forest thinning on soil carbon stocks and dynamics: a meta–analysis. Forest Ecology and Management, 2018, 429, 36- 43.
doi: 10.1016/j.foreco.2018.06.027 |
|
Zhou L L, Cai L P, He Z M, et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China. Environmental Science and Pollution Research, 2016, 23 (23): 24135- 24150.
doi: 10.1007/s11356-016-7624-y |
|
Zhou Z H, Wang C K, Ren C J, et al. Effects of thinning on soil saprotrophic and ectomycorrhizal fungi in a Korean larch plantation. Forest Ecology and Management, 2020, 461, 117920.
doi: 10.1016/j.foreco.2020.117920 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||