Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (5): 41-52.doi: 10.11707/j.1001-7488.LYKX20220393
Previous Articles Next Articles
Chaowei Cui1,2,3,Lihong Peng1,2,Dongxu Ma1,2,Jiaqi Wang1,2,Xiangqing Jiang4,Xiangui Jiang4,Xiangqing Ma1,2,Kaimin Lin1,2,*
Received:
2022-06-11
Online:
2023-05-25
Published:
2023-08-02
Contact:
Kaimin Lin
CLC Number:
Chaowei Cui,Lihong Peng,Dongxu Ma,Jiaqi Wang,Xiangqing Jiang,Xiangui Jiang,Xiangqing Ma,Kaimin Lin. Effects of Thinning on Soil Microbial Necromass Carbon in
Table 1
Profile of stand sample plots"
项目 Item | 弱度间伐 Weak thinning(WT) | 中度间伐 Moderate thinning(MT) | 强度间伐 Heavy thinning(HT) |
经纬度 Latitude and longitude | 117°43′15.56″—117°43′18.37″E,26°32′61.80″—26°32′67.48″N | ||
坡向 Aspect | 阳坡 Sunny slope | ||
坡度 Average slope/(°) | 25 | 27 | 20 |
优势灌木(重要值) Dominant bushes (important value) | 杜茎山Maesa japonica (37.68%)、紫麻Oreocnide frutescens (23.05%) | 杜茎山Maesa japonica (26.77%)、粗叶榕Ficus hirta (21.06%) | 杜茎山Maesa japonica (22.93%)、紫珠Callicarpa bodinieri (15.54%) |
优势草本(重要值) Dominant herbs (important value) | 傅氏凤尾蕨Pteris fauriei(37.01%)、华南毛蕨Cyclosorus parasiticus (12.81%)、中华薹草Carex chinensis (11.20%) | 傅氏凤尾蕨Pteris fauriei (34.19%)、枸骨Ilex cornuta (10.20%)、华南毛蕨Cyclosorus parasiticus (11.62%)、中华薹草Carex chinensis (11.20%) | 傅氏凤尾蕨Pteris fauriei (26.93%)、华南毛蕨Cyclosorus parasiticus (10.57%) |
初植密度 Initial density/(tree·hm?2) | 3 250 | ||
间伐强度 Thinning intensity(%) | 31 | 45 | 63 |
保留密度 Reserving density/(tree·hm?2) | 2 250 | 1 800 | 1 200 |
伐前胸径 DBH before thinning/cm | 11.83±0.29B | 11.44±0.17AB | 10.98±0.33A |
伐后胸径 DBH after thinning/cm | 13.09±0.47B | 13.47±0.47AB | 13.84±0.73A |
伐前树高 Tree height before thinning /m | 11.32±0.14A | 11.34±0.28A | 11.06±0.17A |
伐后树高 Tree height after thinning /m | 11.89±0.18B | 12.04±0.09AB | 12.20±0.36A |
土壤类型 Soil type | 黄红壤 Yellow-red soil | ||
母质 Parent material | 岩浆岩、沉积岩Magmatic, sedimentary |
Fig.2
Profile distribution of microbial necromass carbon contribution to SOC under different thinning intensities T: thinning intensity; D: soil depth; T×D: interaction between thinning intensity and soil depth. ns, * and *** represent the statistical significance of P>0.05, P<0.05 and P<0.001."
Table 2
Soil physicochemical properties of Cunninghamia lanceolata plantation under different thinning intensities"
土壤指标 Soil index | 0~10 cm | 10~20 cm | Two-way ANOVA | ||||||||
WT | MT | HT | WT | MT | HT | T | D | T×D | |||
SD/(g·cm?3) | 1.20±0.11Aa | 1.09±0.27Aa | 1.01±0.20Aa | 1.23±0.11Aa | 1.15±0.21Aa | 1.08±0.26Aa | ns | ns | ns | ||
SMC(%) | 31.60±2.10Ba | 30.73±1.96Ba | 33.95±2.35Aa | 30.99±2.48ABa | 29.84±2.41Ba | 32.99±2.74Aa | * | ns | ns | ||
pH | 4.42±0.08Aa | 4.33±0.07ABa | 4.29±0.12Ba | 4.61±0.35Aa | 4.22±0.06Bb | 4.32±0.1Ba | ** | ns | * | ||
SOC/(g·kg?1) | 16.47±3.04Aa | 18.04±2.14Aa | 19.14±3.59Aa | 11.45±2.20Ba | 11.25±1.03Bb | 15.17±3.59Aa | * | ** | ns | ||
TN/(g·kg?1) | 1.58±0.08Aa | 1.55±0.13Aa | 1.81±0.06Aa | 1.37±0.04Ab | 1.01±0.07Bb | 1.38±0.05Ab | ** | * | ns | ||
TP/(g·kg?1) | 0.48±0.05Ba | 0.56±0.03Ba | 0.95±0.13Aa | 0.48±0.06Ba | 0.51±0.01Bb | 0.81±0.14Aa | ** | * | ns | ||
AP/(mg·kg?1) | 2.98±0.08Bb | 3.08±0.10Bb | 3.30±0.16Aa | 2.96±0.11Bb | 2.92±0.07Bb | 3.14±0.16Aa | ** | ** | ns | ||
NO3?-N/(mg·kg?1) | 2.86±0.06Ca | 3.58±0.14Bb | 4.61±0.12Aa | 3.03±0.14Ba | 4.36±0.01Aa | 4.50±0.11Aa | ** | * | * | ||
NH4+-N/(mg·kg?1) | 11.37±0.29Ca | 14.46±0.46Bb | 17.40±0.64Ab | 11.38±0.36Ca | 17.79±0.74Ba | 20.04±1.01Aa | ** | * | * | ||
MBC/(mg·kg?1) | 277.67±30.94Cb | 456.56±44.32Ba | 565.99±33.18Aa | 332.62±40.84Ba | 414.88±46.9Aa | 426.97±59.6Ab | ** | ** | ** | ||
DOC/(mg·kg?1) | 467.32±43.72Ca | 578.66±48.36Ba | 772.78±51.91Aa | 504.26±37.9Ca | 557.93±67.34Ba | 686.53±46.12Ab | ** | ns | ** |
邓先智, 类延宝, 沈 杰, 等. 模拟根系分泌物输入对高寒退化草地土壤微生物残体的影响. 生态学报, 2022, 42 (20): 8311- 8321. | |
Deng X Z, Lei Y B, Shen J, et al. Effects of simulated root exudates input on soil microbial residues in the degraded alpine grassland. Acta Ecologica Sinica, 2022, 42 (20): 8311- 8321. | |
丁 波, 丁贵杰, 赵熙州, 等. 间伐对杉木人工林土壤酶活性及微生物的影响. 林业科学研究, 2017, 30 (6): 1059- 1065. | |
Ding B, Ding G J, Zhao X Z, et al. Impacts of thinning on soil enzymes activity and microorganisms in Cunninghamia lanceolata plantation . Forest Research, 2017, 30 (6): 1059- 1065. | |
丁雪丽, 何红波, 白 震, 等. 不同供氮水平对施用玉米秸秆后黑土氨基糖转化的影响. 应用生态学报, 2009, 20 (9): 2207- 2213. | |
Ding X L, He H B, Bai Z, et al. Effects of nitrogen supply level on microbial transformation of amino sugar in a mollisol amended with maize straw. Chinese Journal of Applied Ecology, 2009, 20 (9): 2207- 2213. | |
郝俊鹏, 凌 宁, 李瑞霞, 等. 间伐对马尾松人工林土壤酶活性的影响. 南京林业大学学报(自然科学版), 2013, 37 (4): 51- 56. | |
Hao J P, Ling N, Li R X, et al. Effects of thinning on the soil enzyme activity in the Pinus massoniana Lamb . plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37 (4): 51- 56. | |
梁 超, 朱雪峰. 土壤微生物碳泵储碳机制概论. 中国科学(地球科学), 2021, 51 (5): 680- 695.
doi: 10.1360/SSTe-2020-0213 |
|
Liang C, Zhu X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Scientia Sinica (Terrae), 2021, 51 (5): 680- 695.
doi: 10.1360/SSTe-2020-0213 |
|
李庭宇, 李双异, 刘 旭, 等. 土壤微生物标识物——氨基糖的研究进展. 土壤通报, 2022, 53 (1): 241- 252.
doi: 10.19336/j.cnki.trtb.2021032302 |
|
Li T Y, Li S Y, Liu X, et al. Soil biomarkers: research progress of amino sugars. Chinese Journal of Soil Science, 2022, 53 (1): 241- 252.
doi: 10.19336/j.cnki.trtb.2021032302 |
|
滕泽栋, 李 敏, 朱 静, 等. 解磷微生物对土壤磷资源利用影响的研究进展. 土壤通报, 2017, 48 (1): 229- 235. | |
Teng Z D, Li M, Zhu J, et al. Research advances in effect of phosphate-solubilizing microorganisms on soil phosphorus resource utilization. Chinese Journal of Soil Science, 2017, 48 (1): 229- 235. | |
徐雪蕾, 孙玉军, 周 华, 等. 间伐强度对杉木人工林林下植被和土壤性质的影响. 林业科学, 2019, 55 (3): 1- 12. | |
Xu X L, Sun Y J, Zhou H, et al. Effects of thinning intensity on understory growth and soil properties in Chinese fir plantation. Scientia Silvae Sinicae, 2019, 55 (3): 1- 12. | |
于立忠, 张景普, 刘利芳, 等. 间伐对不同肥力日本落叶松人工林土壤酶活性的影响. 生态学杂志, 2017, 36 (11): 3017- 3027. | |
Yu L Z, Zhang J P, Liu L F, et al. The effects of thinning on soil enzyme activities in Larix kaempferi plantations with different site conditions . Chinese Journal of Ecology, 2017, 36 (11): 3017- 3027. | |
于颖超, 张心昱, 戴晓琴, 等. 亚热带红壤区森林土壤剖面微生物残体碳分布及影响因素. 生态学报, 2022, 42 (3): 1108- 1117. | |
Yu Y C, Zhang X Y, Dai X Q, et al. Distributions and influencing factors of microbial residue carbon contents in forest soil profile in subtropical red soil region. Acta Ecologica Sinica, 2022, 42 (3): 1108- 1117. | |
Amelung W, Brodowski S, Sandhage-Hofmann A, et al. 2008. Chapter 6 combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Advances in Agronomy, Amsterdam: Elsevier, 155-250. | |
Chen J, Luo Y Q, Li J W, et al. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology, 2017, 23 (3): 1328- 1337.
doi: 10.1111/gcb.13402 |
|
Cotrufo M F, Ranalli M G, Haddix M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12 (12): 989- 994.
doi: 10.1038/s41561-019-0484-6 |
|
Dang P, Gao Y, Liu J, et al. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Science of the Total Environment, 2018, 630, 171- 180.
doi: 10.1016/j.scitotenv.2018.02.197 |
|
Ding X L, Han X Z, Zhang X D, et al. Effects of contrasting agricultural management on microbial residues in a Mollisol in China. Soil and Tillage Research, 2013, 130, 13- 17.
doi: 10.1016/j.still.2013.02.001 |
|
Fan X L, Gao D C, Zhao C H, et al. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. The ISME Journal, 2021, 15 (8): 2248- 2263.
doi: 10.1038/s41396-021-00914-0 |
|
Fan Y X, Yang L M, Zhong X J, et al. N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest . Geoderma, 2020, 375, 114470.
doi: 10.1016/j.geoderma.2020.114470 |
|
Fernandez C W, Langley J A, Chapman S, et al. The decomposition of ectomycorrhizal fungal necromass. Soil Biology and Biochemistry, 2016, 93, 38- 49.
doi: 10.1016/j.soilbio.2015.10.017 |
|
Grover M, Maheswari M, Desai S, et al. Elevated CO2: plant associated microorganisms and carbon sequestration . Applied Soil Ecology, 2015, 95, 73- 85.
doi: 10.1016/j.apsoil.2015.05.006 |
|
Hall S J, Huang W J, Timokhin V I, et al. 2020. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology,doi: 10.1002/ECY.3113. | |
He H B, Zhang, Zhang X D, et al. Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation. Soil Biology and Biochemistry, 2011, 43 (6): 1155- 1161.
doi: 10.1016/j.soilbio.2011.02.002 |
|
Hogberg P, Read D J. Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution, 2006, 21 (10): 548- 554. | |
Hu L N, Li Q, Yan J H, et al. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China Karst region. Science of the Total Environment, 2022, 820, 153137.
doi: 10.1016/j.scitotenv.2022.153137 |
|
Hu Y T, Zheng Q, Noll L, et al. Direct measurement of the in situ decomposition of microbial-derived soil organic matter . Soil Biology and Biochemistry, 2019, 141, 107660. | |
Indorf C, Dyckmans J, Khan K S, et al. Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates. Biology and Fertility of Soils, 2011, 47 (4): 387- 396.
doi: 10.1007/s00374-011-0545-5 |
|
Iyyemperumal K, Green J, Israel D W, et al. Soil chemical and microbiological properties in hay production systems: residual effects of contrasting N fertilization of swine lagoon effluent versus ammonium nitrate. Biology and Fertility of Soils, 2008, 44 (3): 425- 434.
doi: 10.1007/s00374-007-0221-y |
|
Joergensen R G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 2018, 54 (5): 559- 568.
doi: 10.1007/s00374-018-1288-3 |
|
Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 2003, 113 (3/4): 273- 291. | |
Kallenbach C M, Grandy A S, Frey S D, et al. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biology and Biochemistry, 2015, 91, 279- 290.
doi: 10.1016/j.soilbio.2015.09.005 |
|
Kögel-Knabner I, Guggenberger G, Kleber M, et al. Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 2008, 171 (1): 61- 82.
doi: 10.1002/jpln.200700048 |
|
Lavallee J M, Soong J L, Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26 (1): 261- 273.
doi: 10.1111/gcb.14859 |
|
Lehmann J, Kinyangi J, Solomon D. Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry, 2007, 85 (1): 45- 57.
doi: 10.1007/s10533-007-9105-3 |
|
Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature, 2015, 528 (7580): 60- 68.
doi: 10.1038/nature16069 |
|
Liang C, Amelung W, Lehmann J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25 (11): 3578- 3590.
doi: 10.1111/gcb.14781 |
|
Liang C, Balser T C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Reviews Microbiology, 2011, 9 (1): 75. | |
Liang C, Duncan D S, Balser T C, et al. Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin, USA. Soil Biology and Biochemistry, 2013, 57, 939- 942.
doi: 10.1016/j.soilbio.2012.09.006 |
|
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2, 17105.
doi: 10.1038/nmicrobiol.2017.105 |
|
Ma T, Zhu S S, Wang Z H, et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 2018, 9, 3480.
doi: 10.1038/s41467-018-05891-1 |
|
Mou Z J, Kuang L, He L, et al. Climatic and edaphic controls over the elevational pattern of microbial necromass in subtropical forests. CATENA, 2021, 207, 105707.
doi: 10.1016/j.catena.2021.105707 |
|
Ni X Y, Liao S, Tan S Y, et al. The vertical distribution and control of microbial necromass carbon in forest soils. Global Ecology and Biogeography, 2020, 29 (10): 1829- 1839.
doi: 10.1111/geb.13159 |
|
Nottingham A T, Whitaker J, Turner B L, et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes . BioScience, 2015, 65 (9): 906- 921.
doi: 10.1093/biosci/biv109 |
|
Prommer J, Walker T W N, Wanek W, et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology, 2020, 26 (2): 669- 681.
doi: 10.1111/gcb.14777 |
|
Schmidt J, Fester T, Schulz E, et al. Effects of plant-symbiotic relationships on the living soil microbial community and microbial necromass in a long-term agro-ecosystem. Science of the Total Environment, 2017, 581/582, 756- 765.
doi: 10.1016/j.scitotenv.2017.01.005 |
|
Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478 (7367): 49- 56.
doi: 10.1038/nature10386 |
|
Shao P S, Liang C, Lynch L, et al. Reforestation accelerates soil organic carbon accumulation: evidence from microbial biomarkers. Soil Biology and Biochemistry, 2019, 131, 182- 190.
doi: 10.1016/j.soilbio.2019.01.012 |
|
Shao S, Zhao Y, Zhang W, et al. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biology and Biochemistry, 2017, 114, 114- 120.
doi: 10.1016/j.soilbio.2017.07.007 |
|
Spohn M, Klaus K, Wanek W, et al. Microbial carbon use efficiency and biomass turnover times depending on soil depth - Implications for carbon cycling. Soil Biology and Biochemistry, 2016, 96, 74- 81.
doi: 10.1016/j.soilbio.2016.01.016 |
|
Sradnick A, Oltmanns M, Raupp J, et al. Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil. Geoderma, 2014, 226/227, 79- 84.
doi: 10.1016/j.geoderma.2014.03.005 |
|
Teste F P, Lieffers V J, Strelkov S E. Ectomycorrhizal community responses to intensive forest management: thinning alters impacts of fertilization. Plant and Soil, 2012, 360 (1): 333- 347. | |
Wang B R, Liang C, Yao H J, et al. The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration. CATENA, 2021, 207, 105622.
doi: 10.1016/j.catena.2021.105622 |
|
Wang S L, Zhang W D, Sanchez F. Relating net primary productivity to soil organic matter decomposition rates in pure and mixed Chinese fir plantations. Plant and Soil, 2010, 334 (1): 501- 510. | |
Zhang W, Cui Y H, Lu X K, et al. High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem. Soil Biology and Biochemistry, 2016, 97, 211- 214.
doi: 10.1016/j.soilbio.2016.03.019 |
|
Zhang X D, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 1996, 28 (9): 1201- 1206.
doi: 10.1016/0038-0717(96)00117-4 |
|
Zhou J, Wen Y, Shi L, et al. Strong priming of soil organic matter induced by frequent input of labile carbon. Soil Biology and Biochemistry, 2021, 152, 108069.
doi: 10.1016/j.soilbio.2020.108069 |
|
Zhou L L, Cai L P, He Z M, et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in Southern China. Environmental Science and Pollution Research, 2016, 23 (23): 24135- 24150.
doi: 10.1007/s11356-016-7624-y |
|
Zhu Y G, Miller R M. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Science, 2003, 8 (9): 407- 409.
doi: 10.1016/S1360-1385(03)00184-5 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||