Scientia Silvae Sinicae ›› 2019, Vol. 55 ›› Issue (11): 37-44.doi: 10.11707/j.1001-7488.20191105
Previous Articles Next Articles
Zhengang Lü1,2,Wenbo Li2,Xuanrui Huang2,Zhidong Zhang2,*
Received:
2019-03-09
Online:
2019-11-25
Published:
2019-12-21
Contact:
Zhidong Zhang
Supported by:
CLC Number:
Zhengang Lü,Wenbo Li,Xuanrui Huang,Zhidong Zhang. Larix principis-rupprechtii Growth Suitability Based on Potential NPP under Climate Change Scenarios in Hebei Province[J]. Scientia Silvae Sinicae, 2019, 55(11): 37-44.
Table 1
Potential NPP and its suitable growth pattern of Larix principis-rupprechtii in current and future periods"
时期 Periods | 潜在NPP范围 Potential NPP range/ (gC·m-2a-1) | 潜在NPP均值 Potential NPP mean/ (gC·m-2a-1) | 不适宜生长区面积比例 Area percentage of not suitable(%) | 低度适宜生长区区面积比例 Area percentage of low suitable(%) | 中度适宜生长区区面积比例 Area percentage of mid-suitable(%) | 高度适宜生长区区面积比例 Area percentage of high suitable(%) |
当前Current | 185.8~551.8 | 342.7 | 7.4 | 76.7 | 15.3 | 0.6 |
2040—2069 | 217.8~547.2 | 392.9 | 2.3 | 32.6 | 59.4 | 5.7 |
2070 —2099 | 221.8~540.6 | 375.1 | 4.2 | 64.9 | 29.4 | 1.5 |
Table 2
Threshold values of temperature and precipitation in different suitable growing areas of Larix principis-rupprechtii"
气候因子 Climatic factors | 不适宜 Not suitable | 低度适宜 Low suitable | 中度适宜 Mid-suitable | 高度适宜 High suitable |
年均气温Mean annual temperature/℃ | 1.0~11.6 | -0.1 ~14.7 | 0~14.1 | 3.8~9.5 |
年均降水量Mean annual precipitation/mm | 324.9~657.2 | 311.3~862.1 | 426.9 ~895.6 | 528.5~1 004.1 |
吕振刚, 李文博, 黄选瑞, 等. 气候变化情景下河北省3个优势树种适宜分布区预测. 林业科学, 2019. 55 (3): 13- 21. | |
Lü Z G , Li W B , Huang X R , et al. Predicting suitable distribution area of three dominant tree species under climate change scenarios in Hebei Province. Scientia Silvae Sinicae, 2019. 55 (3): 13- 21. | |
彭俊杰, 何兴元, 陈振举, 等. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应——基于BIOME-BGC模型和树木年轮的模拟. 应用生态学报, 2012. 23 (7): 1733- 1742. | |
Peng J J , He X Y , Chen Z J , et al. Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2:a simulation based on BIOME-BGC model and tree-ring data. Chinese Journal of Applied Ecology, 2012. 23 (7): 1733- 1742. | |
戚鹏程. 2009.基于GIS的陇西黄土高原落叶阔叶林潜在分布及潜在净初级生产力的模拟研究.兰州:兰州大学博士学位论文. | |
Qi P C. 2009. GIS-based modeling of the potential distribution and the net primary productivity of deciduous broad-leaved forest in the western part of the Chinese Loess Plateau. Lanzhou: PhD thesis of Lanzhou University.[in Chinese] | |
孙立元, 任宪威. 河北树木志. 北京: 中国林业出版社. 1997. | |
Sun L Y , Ren X W . Hebei tree records. Beijing: China Forestry Publishing House. 1997. | |
吴中伦. 中国森林(第2卷):针叶林. 北京: 中国林业出版社. 1999. | |
Wu Z L . Chinese forest(volume II):coniferous forest. Beijing: China Forestry Publishing House. 1999. | |
张峰, 周广胜, 王玉辉. 基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟. 植物生态学报, 2008. 32 (4): 786- 797. | |
Zhang F , Zhou G S , Wang Y H . Dynamics simulation of net primary productivity by a satellite data-driven CASA model in Inner Mongolian typical steppe, China. Chinese Journal of Plant Ecology, 2008. 32 (4): 786- 797. | |
周广胜, 张新时. 自然植被净第一性生产力模型初探. 植物生态学报, 1995. 19 (3): 193- 200. | |
Zhou G S , Zhang X S . A natural vegetation NPP model. Chinese Journal of Plant Ecology, 1995. 19 (3): 193- 200. | |
周广胜, 郑元润, 陈四清, 等. 自然植被净第一性生产力模型及其应用. 林业科学, 1998. 34 (5): 4- 13. | |
Zhou G S , Zheng Y R , Chen S Q , et al. NPP model of natural vegetation and its application in China. Scientia Silvae Sinicae, 1998. 34 (5): 4- 13. | |
朱文泉, 潘耀忠, 龙中华, 等. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例. 遥感学报, 2005. 9 (3): 300- 307. | |
Zhu W Q , Pan Y Z , Long Z H , et al. Estimating net primary productivity of terrestrial vegetation based on GIS and RS:a case study in Inner Mongolia, China. Journal of Remote Sensing, 2005. 9 (3): 300- 307. | |
朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007. 31 (3): 413- 424. | |
Zhu W Q , Pan Y Z , Zhang J S . Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chinese Journal of Plant Ecology, 2007. 31 (3): 413- 424. | |
Breiman L . Statistical modeling:the two cultures. Statistical Science, 2001. 16 (3): 199- 215. | |
Chen W J , Black T A , Yang P C , et al. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology, 1999. 5 (1): 41- 53. | |
Cramer W , Kicklighter D W , Bondeau A , et al. Comparing global models of terrestrial net primary productivity (NPP):overview and key results. Global Change Biology, 1999. 51 (S1): 1- 15. | |
Dyderski M K , Paz S , Frelich L E , et al. How much does climate change threaten European forest tree species distributions?. Global Change Biology, 2018. 24 (3): 1150- 1163. | |
Eric J G , Miranda B R , De B A , et al. Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition. Environmental Modelling & Software, 2017. 97, 171- 183. | |
Fettig C J , Reid M L , Bentz B J , et al. Changing climates, changing forests:a western North American perspective. Journal of Forestry, 2013. 111 (3): 214- 228. | |
Field C B , Randerson J T , Malmstrom C M . Global net primary production-combining ecology and remote-sensing. Remote Sensing of Environment, 1995. 51 (1): 74- 88. | |
Goetz S J , Prince S D , Goward S N , et al. Satellite remote sensing of primary production:an improved production efficiency modeling approach. Ecological Modelling, 1999. 122 (3): 239- 255. | |
IP CC . Climate change 2014:impacts, adaptation, and vulnerability. United Kingdom: Cambridge University Press. 2014. | |
Ito A , Oikawa T . A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE):a description based on dry-matter production theory and plot-scale validation. Ecological Modelling, 2002. 151 (1): 143- 176. | |
Iverson L R , Prasad A M , Matthews S N , et al. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 2008. 254 (3): 390- 406. | |
Jarvis P , Linder S . Botany-constraints to growth of boreal forests. Nature, 2000. 405 (6789): 904- 905. | |
Lieth H, Whittaker R H. 1975. Primary productivity of the biosphere. Berlin: Springer. | |
Moss R H , Edmonds J A , Hibbard K A , et al. The next generation of scenarios for climate change research and assessment. Nature, 2010. 463 (7282): 747- 756. | |
Wang S Q , Zhou L , Chen J M , et al. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Journal of Environmental Management, 2011. 92 (6): 1651- 1662. | |
Wang T L , Hamann A , Spittle D L , et al. Climate WNA-High-Resolution spatial climate data for western north America. Journal of Applied Meteorology and Climatology, 2012. 51 (1): 16- 29. | |
Wang T L , Wang G , Innes J , et al. Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia-Pacific region. Forest Ecology and Management, 2016. (360): 357- 366. | |
Yu Y , Chen J M , Yang X , et al. Influence of site index on the relationship between forest net primary productivity and stand age. Plos One, 2017. 12 (5): e0177084. | |
Yuan Q , Wu S , Dai E , et al. NPP vulnerability of the potential vegetation of China to climate change in the past and future. Journal of Geographical Sciences, 2017. 27 (2): 131- 142. | |
Yuan Q , Wu S , Zhao D , et al. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005. Journal of Geographical Sciences, 2014. 24 (1): 3- 17. | |
Zhu W Q , Pan Y Z , He H , et al. Simulation of maximum light use efficiency for some typical vegetation types in China. Chinese Science Bulletin, 2006. 51 (4): 457- 463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||