Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (6): 75-84.doi: 10.11707/j.1001-7488.LYKX20240089
• Research papers • Previous Articles Next Articles
Jianwen Hu1,2,Changfu Liu1,3,4,*(),Mengmeng Gou1,3,4,Lei Lei1,3,4,Huiling Chen1,Jiajia Zhang1,Sufeng Zhu1,Ruyuan Hu1,Wenfa Xiao1,3,4
Received:
2024-02-14
Online:
2025-06-10
Published:
2025-06-26
Contact:
Changfu Liu
E-mail:liucf898@163.com
CLC Number:
Jianwen Hu,Changfu Liu,Mengmeng Gou,Lei Lei,Huiling Chen,Jiajia Zhang,Sufeng Zhu,Ruyuan Hu,Wenfa Xiao. Response and Driving Factors of Soil Organic Carbon and Its Fractions to Stand Age in Pinus massoniana Plantation[J]. Scientia Silvae Sinicae, 2025, 61(6): 75-84.
Table 1
Site information of Pinus massoniana plantations with different stand ages"
样地信息 | 林龄 Stand age /a | ||||
Site information | 6 | 13 | 29 | 38 | 57 |
海拔 Altitude/ m | 98.60 ± 8.70 | 113.10 ± 15.60 | 97.40 ± 4.40 | 161.50 ± 3.60 | 166.40 ± 4.00 |
坡度 Slope/(°) | 5 | 7 | 5 | 5 | 15 |
DBH / cm | 7.20 ± 0.10C | 10.76 ± 0.29C | 23.63 ± 1.19B | 30.08 ± 1.51A | 32.63 ± 1.87A |
树高 Tree height / m | 6.7 ± 0.1D | 8.2 ± 0.1D | 12.2 ± 0.4C | 15.4 ± 0.2B | 17.1 ± 0.6A |
林分密度 Stand density /( tree·hm?2 ) | 625 ± 80B | 525 ± 88B | 358 ± 46B | ||
灌木生物量 Shrub biomass /(g·m?2 ) | 0.00 ± 0.00A | 151.67 ± 47.49A | 122.07 ± 25.92A | 489.86 ± 373.18A | |
草本生物量 Herbage biomass /(g·m?2 ) | 30.23 ± 10.20A | 10.71 ± 8.43A | 1.66 ± 1.66A | 48.14 ± 27.16A | 74.90 ± 23.49A |
地表凋落物现存量 Forest floor litter biomass / (g·m?2) | 599.77 ± 95.67B | 752.91 ± 80.21AB | 907.31 ± 73.31AB | 741.97 ± 83.67AB | |
细根生物量 Fine root biomass / (g·m?2) | 15.10 ± 0.94B | 27.60 ± 2.95AB | 41.56 ± 7.05AB | 56.74 ± 15.85A | 56.74 ± 6.69A |
土壤密度 Soil density / (g·cm?3 ) | 1.26 ± 0.07A | 1.31 ± 0.02A | 1.36 ± 0.03A | 1.19 ± 0.06A | 1.32 ± 0.07A |
黏粒含量 Clay content (<2 μm)(%) | 22.90 ± 3.13AB | 21.72 ± 0.27AB | 21.53 ± 1.45B | 29.12 ± 0.84A | 21.52 ± 0.63B |
粉粒含量 Silt content (2 ~ 20 μm)(% ) | 66.17 ± 2.12A | 65.44 ± 1.01AB | 67.23 ± 1.69A | 58.94 ± 1.25B | 68.71 ± 1.37A |
砂粒含量 Sand content ( >20 μm)(% ) | 10.92 ± 1.10A | 12.84 ± 1.27A | 11.25 ± 0.41A | 11.94 ± 0.73A | 9.77 ± 1.66A |
Table 2
Soil biological and chemical properties of Pinus massoniana plantation with various stand ages"
组分 Fractions | 指标 Indicators | 林龄Stand age/a | ||||
6 | 13 | 29 | 38 | 57 | ||
全土 Bulk soil | 土壤有机碳含量 Soil organic carbon content / (g·kg?1) | 15.35±0.37BC | 13.22±0.83C | 18.28±1.05AB | 21.90±1.07A | 19.86±1.51AB |
全氮含量 Total nitrogen content / (g·kg?1) | 1.62±0.05BC | 1.34±0.07C | 1.64±0.09BC | 2.06±0.07A | 1.92±0.08AB | |
全磷含量 Total phosphorus content / (g·kg?1) | 0.23±0.06A | 0.33±0.01A | 0.28±0.03A | 0.29±0.01A | 0.38±0.03A | |
碳氮比 Ratio of carbon to nitrogen | 9.48±0.16B | 9.84±0.12B | 11.14±0.15A | 10.64±0.28AB | 10.31±0.45AB | |
碳磷比 Ratio of carbon to phosphorus | 84.95±32.5A | 40.63±3.35A | 68.64±12.84A | 74.91±3.71A | 53.32±6.02A | |
pH | 6.21±0.03A | 5.37±0.04B | 5.44±0.23B | 4.79±0.04B | 5.11±0.24B | |
细菌生物量 Bacterial biomass / (nmol·g?1) | 5.57±0.61A | 5.41±0.22A | 6.32±0.01A | 6.5±0.65A | 7.05±0.68A | |
真菌生物量 Fungal biomass /(nmol·g?1) | 0.60±0.06A | 0.46±0.01A | 0.55±0.02A | 0.42±0.04A | 0.48±0.05A | |
真菌生物量/细菌生物量 Ratio of fungal to bacterial biomass | 0.11±0.00A | 0.09±0.00B | 0.09±0.00B | 0.07±0.00C | 0.07±0.00C | |
矿物结合组分 Mineral-associated fraction | 全氮含量 Total nitrogen content / (g·kg?1) | 1.34±0.01BC | 1.08±0.06C | 1.35±0.08BC | 1.88±0.08A | 1.55±0.13AB |
全磷含量 Total phosphorus content / (g·kg?1) | 0.27±0.02A | 0.16±0.01B | 0.18±0.02B | 0.20±0.00B | 0.17±0.01B | |
碳氮比 Ratio of carbon to nitrogen | 10.53±0.16B | 10.95±0.19AB | 11.07±0.04AB | 11.87±0.42A | 11.13±0.16AB | |
碳磷比Ratio of carbon to phosphorus | 53.63±4.50D | 72.76±6.05CD | 81.60±4.12BC | 112.78±1.93A | 102.05±8.18AB | |
重颗粒组分 Heavy particulate fraction | 全氮含量 Total nitrogen content / (g·kg?1) | 2.12±0.12AB | 1.81±0.14B | 2.05±0.23AB | 1.26±0.14B | 3.09±0.41A |
全磷含量 Total phosphorus content / (g·kg?1) | 0.33±0.03A | 0.35±0.01A | 0.33±0.01A | 0.19±0.00B | 0.22±0.01B | |
碳氮比 Ratio of carbon to nitrogen | 18.43±0.91A | 19.69±0.72A | 18.75±0.69A | 16.70±0.41A | 17.89±0.75A | |
碳磷比 Ratio of carbon to phosphorus | 124.98±25.42B | 102.84±6.55B | 114.33±4.98B | 109.28±11.33B | 249.52±45.53A | |
轻颗粒组分 Light particulate fraction | 全氮含量 Total nitrogen content / (g·kg?1) | 9.68±0.79A | 10.01±0.74A | 8.03±0.35A | 9.10±0.23A | 8.17±0.17A |
碳氮比 Ratio of carbon to nitrogen | 32.72±2.51A | 33.75±1.67A | 36.04±0.76A | 31.58±0.70A | 34.10±1.25A |
Table 3
Dry mass, dry mass fraction, organic carbon content, and organic carbon dry mass fraction of soil organic carbon fractions in Pinus massoniana plantations with different stand ages"
组分Fraction | 林龄 Stand age/a | 干质量 Dry mass / g | 干质量分数 Dry mass fraction (%) | 有机碳含量 Organic carbon content / (g·kg?1) | 有机碳干质量分数 Organic carbon dry mass fraction (%) |
矿物结合组分 Mineral-associated fraction | 6 | 28.00±0.33 A | 93.33±1.09 A | 14.14±0.30 BC | 80.15±1.83 A |
13 | 27.80±0.10 A | 92.67±0.32 A | 11.82±0.69 C | 74.86±0.84 A | |
29 | 27.89±0.31 A | 92.97±1.03 A | 14.89±0.86 BC | 75.20±1.56 A | |
38 | 21.90±0.75 B | 72.98±2.51 B | 22.29±0.38 A | 66.78±2.35 B | |
57 | 27.99±0.09 A | 93.29±0.29 A | 17.27±1.59 B | 75.69±0.95 A | |
重颗粒组分 Heavy particle fraction | 6 | 1.92±0.32 B | 6.41±1.06 B | 39.34±4.30 AB | 14.75±1.00 B |
13 | 2.09±0.10 B | 6.96±0.32 B | 35.46±2.53 AB | 16.84±0.60 AB | |
29 | 1.88±0.30 B | 6.27±1.00 B | 38.15±3.00 AB | 12.92±1.85 B | |
38 | 7.82±0.72 A | 26.08±2.41 A | 21.00±1.76 B | 22.20±1.08 A | |
57 | 1.83±0.07 B | 6.08±0.23 B | 55.81±9.89 A | 15.70±1.24 B | |
轻颗粒组分 Light particle fraction | 6 | 0.08±0.01 C | 0.27±0.04 C | 313.74±13.87 AB | 5.11±0.90 B |
13 | 0.11±0 BC | 0.36±0.01 BC | 335.68±12.45 A | 8.31±0.25 AB | |
29 | 0.23±0.04 AB | 0.76±0.13 AB | 288.91±8.39 AB | 11.88±1.93 A | |
38 | 0.28±0.03 A | 0.93±0.11 A | 286.99±3.69 B | 11.01±1.30 AB | |
57 | 0.19±0.03 ABC | 0.63±0.10 ABC | 278.30±8.76 B | 8.61±2.01 AB |
Table 4
Correlations among properties of soil organic carbon fractions in Pinus massoniana plantations"
因子Factors | SOC | MFLPF | MFHPF | MFMAF | LPOC | HPOC | MAOC |
SOC | 1.00 | 0.67** | 0.56* | ?0.57* | ?0.72** | 0.07 | 0.93** |
MFLPF | 0.67** | 1.00 | 0.64** | ?0.66** | ?0.55* | ?0.43 | 0.63* |
MFHPF | 0.56* | 0.64** | 1.00 | ?0.99** | ?0.24 | ?0.66** | 0.79** |
MFMAF | ?0.57* | ?0.66** | ?0.99** | 1.00 | ?0.25 | 0.66** | ?0.80** |
LPOC | ?0.72** | ?0.55* | ?0.24 | ?0.25 | 1.00 | ?0.14 | ?0.60* |
HPOC | 0.07 | ?0.43 | ?0.66** | 0.66** | ?0.14 | 1.00 | ?0.16 |
MAOC | 0.93** | 0.63* | 0.79** | ?0.80** | ?0.60* | ?0.16 | 1.00 |
Table 5
Driving factors of soil organic carbon and its fractions carbon content accumulation in Pinus massoniana plantations"
逐步回归方程 Stepwise regression equations | 决定系数 Determination coefficient (R2) | 显著性 Significance (P) |
SOC = 0.002FFL + 6.152MFLPF ? 0.273MFHPF + 1.070MAOC + 0.509 | R2=0.98 | P<0.05 |
MAOC = 0.235MFHPF + 0.085MC/P + 6.428 | R2=0.77 | P<0.01 |
HPOC = ? 0.714MFHPF + 0.151HC/P + 24.466 | R2=0.93 | P<0.01 |
LPOC = ? 20.011BB + 424.161 | R2=0.52 | P<0.01 |
陈 甜, 元方慧, 张琳梅, 等. 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响. 应用生态学报, 2022, 33 (10): 2602- 2610. | |
Chen T, Yuan F H, Zhang L M, et al. Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect. Chinese Journal of Applied Ecology, 2022, 33 (10): 2602- 2610. | |
崔宁洁, 刘小兵, 张丹桔, 等. 不同林龄马尾松(Pinus massoniana)人工林碳氮磷分配格局及化学计量特征. 生态环境学报, 2014, 23 (2): 188- 195.
doi: 10.3969/j.issn.1674-5906.2014.02.002 |
|
Cui N J, Liu X B, Zhang D J, et al. The distribution pattern of carbon, nitrogen and phosphorus and the stoichiometry characteristics of Pinus massoniana plantation in different ages. Ecology and Environmental Sciences, 2014, 23 (2): 188- 195.
doi: 10.3969/j.issn.1674-5906.2014.02.002 |
|
何 斌, 李 青, 冯 图, 等. 不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系. 南京林业大学学报(自然科学版), 2020, 44 (2): 181- 190. | |
He B, Li Q, Feng T, et al. Variation in leaf functional traits of different-aged Pinus massoniana communities and relationships with soil nutrients. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44 (2): 181- 190. | |
何亚婷, 何友均, 王 鹏, 等. 不同经营模式对蒙古栎林土壤有机碳组分的长效性影响. 生态环境学报, 2023, 32 (1): 11- 17. | |
He Y T, He Y J, Wang P, et al. Effects of different forest management regimes on soil organic carbon in aggregate fractions in natural secondary Quercus mongolica forests. Ecology and Environmental Sciences, 2023, 32 (1): 11- 17. | |
胡建文, 刘常富, 勾蒙蒙, 等. 林龄对马尾松人工林微生物残体碳积累的影响机制. 应用生态学报, 2024, 35 (1): 153- 160. | |
Hu J W, Liu C F, Gou M M, et al. Influencing mechanism of stand age to the accumulation of microbial residues carbon in the Pinus massoniana plantations. Chinese Journal of Applied Ecology, 2024, 35 (1): 153- 160. | |
黄腾华, 王军锋, 宋恋环, 等. 马尾松木材性质特点及改性研究现状. 世界林业研究, 2023, 36 (6): 45- 50. | |
Huang T H, Wang J F, Song L H, et al. Research status of properties and modified of masson pine wood. World Forestry Research, 2023, 36 (6): 45- 50. | |
雷丽群, 卢立华, 农 友, 等. 不同林龄马尾松人工林土壤碳氮磷生态化学计量特征. 林业科学研究, 2017, 30 (6): 954- 960. | |
Lei L Q, Lu L H, Nong Y, et al. Stoichiometry characterization of soil C, N and P of Pinus massoniana plantations at different age stages. Forest Research, 2017, 30 (6): 954- 960. | |
李 奇, 朱建华, 冯 源, 等 2016. 中国主要人工林碳储量与固碳能力. 西北林学院学报, 31(4): 1−6. | |
Li Q, Zhu J H, Feng Y, et al. 2016. Carbon stocks and carbon sequestration capacity of the main plantations in China. Journal of Northwest Forestry University, 31(4): 1−6. [in Chinese] | |
李学垣. 1997. 土壤化学及实验指导. 北京: 中国农业出版社. | |
Li X Y. 1997. Soil chemistry and experimental guidance. Beijing: China Agriculture Press. [in Chinese] | |
李玉凤, 马姜明, 何静桦, 等. 广西不同林龄马尾松人工林土壤碳储量动态变化. 广西科学, 2020, 27 (6): 638- 645. | |
Li Y F, Ma J M, He J H, et al. Dynamic changes of soil carbon storage of Pinus massoniana plantations at different stand ages in Guangxi. Guangxi Sciences, 2020, 27 (6): 638- 645. | |
彭思瑞, 张慧玲, 孙兆林, 等. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响. 植物生态学报, 2024, 48 (8): 1078- 1088.
doi: 10.17521/cjpe.2023.0291 |
|
Peng S R, Zhang H L, Sun Z L, et al. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest. Chinese Journal of Plant Ecology, 2024, 48 (8): 1078- 1088.
doi: 10.17521/cjpe.2023.0291 |
|
赵林林, 吴志祥, 孙 瑞, 等. 海南琼中不同林龄橡胶林土壤有机碳组分及其影响因素. 云南农业大学学报 (自然科学), 2023, 38 (5): 886- 893. | |
Zhao L L, Wu Z X, Sun R, et al. Soil organic carbon components and influencing factors of rubber plantations of different ages in Qiongzhong, Hainan. Journal of Yunnan Agricultural University (Natural Science), 2023, 38 (5): 886- 893. | |
周 蕾, 王绍强, 周 涛, 等. 1901—2010年中国森林碳收支动态: 林龄的重要性. 科学通报, 2016, 61 (18): 2064- 2074. | |
Zhou L, Wang S Q, Zhou T, et al. Carbon dynamics of China’s forests during 1901−2010: the importance of forest age. Science China Press, 2016, 61 (18): 2064- 2074. | |
Angst G, Mueller K E, Castellano M J, et al. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nature Communications, 2023, 14 (1): 2967.
doi: 10.1038/s41467-023-38700-5 |
|
Chen A M, Wang Z G, Lin Y M, et al. Temporal variation of soil organic carbon pools along a chronosequence of reforested land in Southwest China. Catena, 2020, 194, 104650.
doi: 10.1016/j.catena.2020.104650 |
|
Coonan E C, Kirkby C A, Kirkegaard J A, et al. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutrient Cycling in Agroecosystems, 2020, 117 (3): 273- 298.
doi: 10.1007/s10705-020-10076-8 |
|
Cotrufo M F, Haddix M L, Kroeger M E, et al. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 2022, 168, 108648.
doi: 10.1016/j.soilbio.2022.108648 |
|
Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8 (10): 776- 779.
doi: 10.1038/ngeo2520 |
|
Cotrufo M F, Wallenstein M D, Boot C M, et al. 2013. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4): 988−995. | |
Fang J Y, Yu G R, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences, 2018, 115 (16): 4015- 4020.
doi: 10.1073/pnas.1700304115 |
|
Fang Y Y, Singh B P, Cowie A, et al. Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions. Geoderma, 2019, 354, 113883.
doi: 10.1016/j.geoderma.2019.113883 |
|
Feng X J, Wang S M. Plant influences on soil microbial carbon pump efficiency. Global Change Biology, 2023, 29 (14): 3854- 3856.
doi: 10.1111/gcb.16728 |
|
Gao D C, Bai E, Wang S Y, et al. Three-dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale. Global Change Biology, 2022, 28 (22): 6728- 6740.
doi: 10.1111/gcb.16374 |
|
Jia Y F, Zhai G Q, Zhu S S, et al. Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology and Biochemistry, 2021, 161, 108375.
doi: 10.1016/j.soilbio.2021.108375 |
|
Jian Z J, Ni Y Y, Lei L, et al. Phosphorus is the key soil indicator controlling productivity in planted masson pine forests across subtropical China. Science of The Total Environment, 2022, 822, 153525.
doi: 10.1016/j.scitotenv.2022.153525 |
|
Justine M F, Yang W Q, Wu F Z, et al. Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests, 2015, 6 (12): 3665- 3682. | |
Justine M F, Yang W Q, Wu F Z, et al. Dynamics of biomass and carbon sequestration across a chronosequence of masson pine plantations. Journal of Geophysical Research: Biogeosciences, 2017, 122 (3): 578- 591.
doi: 10.1002/2016JG003619 |
|
Keesstra S D, Bouma J, Wallinga J, et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2016, 2 (2): 111- 128.
doi: 10.5194/soil-2-111-2016 |
|
Lajtha K, Mayzelle M. Effects of detrital inputs and roots on carbon saturation deficit of a temperate forest soil. Soil Science Society of America Journal, 2014, 78 (S1): 576- 583. | |
Lavallee J M, Soong J L, Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26 (1): 261- 273.
doi: 10.1111/gcb.14859 |
|
Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature, 2015, 528 (7580): 60- 68.
doi: 10.1038/nature16069 |
|
Luan J W, Liu S R, Zhu X L, et al. Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests. Soil Biology and Biochemistry, 2012, 44 (1): 143- 150.
doi: 10.1016/j.soilbio.2011.08.012 |
|
Mujuru L, Gotora T, Velthorst E J, et al. Soil carbon and nitrogen sequestration over an age sequence of Pinus patula plantations in Zimbabwean Eastern Highlands. Forest Ecology and Management, 2014, 313, 254- 265.
doi: 10.1016/j.foreco.2013.11.024 |
|
Ni Y Y, Jian Z J, Zeng L X, et al. Climate, soil nutrients, and stand characteristics jointly determine large-scale patterns of biomass growth rates and allocation in Pinus massoniana plantations. Forest Ecology and Management, 2022, 504, 119839.
doi: 10.1016/j.foreco.2021.119839 |
|
Pregitzer K S, Euskirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology, 2004, 10 (12): 2052- 2077.
doi: 10.1111/j.1365-2486.2004.00866.x |
|
Ridgeway J R, Morrissey E M, Brzostek E R. Plant litter traits control microbial decomposition and drive soil carbon stabilization. Soil Biology and Biochemistry, 2022, 175, 108857.
doi: 10.1016/j.soilbio.2022.108857 |
|
Rumpel C, Amiraslani F, Koutika L S, et al. Put more carbon in soils to meet Paris climate pledges. Nature, 2018, 564 (7734): 32- 34.
doi: 10.1038/d41586-018-07587-4 |
|
Shao S, Zhao Y, Zhang W, et al. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biology and Biochemistry, 2017, 114, 114- 120.
doi: 10.1016/j.soilbio.2017.07.007 |
|
Shen Y F, Lei L, Xiao W F, et al. Soil microbial residue characteristics in Pinus massoniana lamb. Plantations. Environmental Research, 2023, 231, 116081.
doi: 10.1016/j.envres.2023.116081 |
|
Sokol N W, Whalen E D, Jilling A, et al. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: a trait-based perspective. Functional Ecology, 2022, 36 (6): 1411- 1429.
doi: 10.1111/1365-2435.14040 |
|
Tang X L, Zhao X, Bai Y F, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 2018, 115 (16): 4021- 4026.
doi: 10.1073/pnas.1700291115 |
|
Wang C Q, Xue L, Jiao R Z. Soil organic carbon fractions, C-cycling associated hydrolytic enzymes, and microbial carbon metabolism vary with stand age in Cunninghamia lanceolate (Lamb. ) Hook plantations. Forest Ecology and Management, 2021, 482, 118887.
doi: 10.1016/j.foreco.2020.118887 |
|
Witzgall K, Vidal A, Schubert D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 2021, 12 (1): 4115..
doi: 10.1038/s41467-021-24192-8 |
|
Xiong X, Zhou G Y, Zhang D Q. Soil organic carbon accumulation modes between pioneer and old‐growth forest ecosystems. Journal of Applied Ecology, 2020, 57 (12): 2419- 2428.
doi: 10.1111/1365-2664.13747 |
|
Yu F, Zhang W L, Hou X, et al. How nutrient loads influence microbial-derived carbon accumulation in wetlands: a new insight from microbial metabolic investment strategies. Environmental Research, 2023, 217, 114981.
doi: 10.1016/j.envres.2022.114981 |
|
Zhang Q F, Feng J G, Li J, et al. A distinct sensitivity to the priming effect between labile and stable soil organic carbon. New Phytologist, 2023a, 237 (1): 88- 99.
doi: 10.1111/nph.18458 |
|
Zhang Y X, Tang Z X, You Y M, et al. Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest. Soil Biology and Biochemistry, 2023b, 180, 109017.
doi: 10.1016/j.soilbio.2023.109017 |
[1] | Jiajia Zhang,Wenfa Xiao,Lei Lei,Xin Yang,Jianwen Hu,Hongbing Yang,Yiling Liao,Lixiong Zeng. Smooth-Vetch Cover Promotes the Net Accumulation of Soil Particulate Organic Carbon of Citrus Orchards [J]. Scientia Silvae Sinicae, 2025, 61(2): 74-84. |
[2] | Xiaoyan Zhang,Xiaofeng Ni,Qiong Cai,Chengjun Ji. Leaf Anatomical Traits of Understory Plants and Their Response to Nitrogen Addition in a Chronosequence of Larix principis-rupprechtii Plantations in Saihanba, Hebei Province [J]. Scientia Silvae Sinicae, 2025, 61(1): 37-46. |
[3] | Yang Yang,Baorong Wang,Hui Sun,Yuanyuan Zhou,Jiangbo Qiao,Yi Song,Pingping Zhang,Zimin Li,Yunqiang Wang,Shaoshan An. Review of Soil Microbes Mediating Organic Carbon Conversion Process of the Earth Critical Zone [J]. Scientia Silvae Sinicae, 2024, 60(7): 165-174. |
[4] | Xuejuan Bai,Guoqing Zhai,Jingze Liu. Application of 13C Stable Isotopes in Plant-Microbial-Soil Carbon Cycle in Terrestrial Ecosystem [J]. Scientia Silvae Sinicae, 2024, 60(7): 175-190. |
[5] | Chenchen Shen,Wenfa Xiao,Jianhua Zhu,Lixiong Zeng,Jizhen Chen,Zhilin Huang. Characterization of Soil Organic Carbon and Key Influencing Factors of Natural Forests in Central China Based on Machine Learning Algorithms [J]. Scientia Silvae Sinicae, 2024, 60(3): 65-77. |
[6] | Xiangrong Liu,Qiwu Sun,Lingyu Hou,Zhongyi Pang,Yanlin Zhang,Changjun Ding. The Differences in Soil Microbial Community Structure and Functional Diversity among Poplar Plantations at Different Ages in the Songliao Plain [J]. Scientia Silvae Sinicae, 2024, 60(11): 25-36. |
[7] | Xiao Li,Shuxian Jia,Yingqing Xi,Liuming Yang,Xiaofei Liu. Effects of Litter Addition and Removal on Soil Microbial Necromass Carbon in a Natural Forest of Castanopsis carlesii [J]. Scientia Silvae Sinicae, 2024, 60(10): 12-20. |
[8] | Xinsheng Han,Guangquan Liu,Hao Xu,Liguo Dong,Yongzhong Guo,Yu An,Haixia Wan,Yueling Wang. Spatial Variation and Scale Effect of Surface Soil Organic Carbon Content on Typical Slopes in the Loess Region, Ningxia [J]. Scientia Silvae Sinicae, 2024, 60(1): 19-31. |
[9] | Weibin You,Ying Li,Yan Zhou,Dongjin He. Edge Effect of Pinus massoniana Forest Converted into Tea Plantation on Topsoil Carbon Content in Wuyishan National Park [J]. Scientia Silvae Sinicae, 2023, 59(10): 41-49. |
[10] | Sisheng Luo,Bizhen Luo,Shujing Wei,Haiqing Hu,Xiaochuan Li,Zhenshi Wang,Yufei Zhou,Zhao Song,Yingxia Zhong. Characteristics of Soil Carbon Pool in Pinus massoniana Forest One Year after Moderate Forest Fires [J]. Scientia Silvae Sinicae, 2022, 58(9): 25-35. |
[11] | Shuzhen Wang,Jingjing Liang,Mingzhuo Bao,Fei Pan,Chuifan Zhou. Variation of Soil Phosphorus Fractions and the Phosphorus Solubilizing Microbial Communities in Chinese Fir Monoculture Plantations with Different Ages [J]. Scientia Silvae Sinicae, 2022, 58(2): 58-69. |
[12] | Yunxing Bai,Yunchao Zhou,Xunyuan Zhang,Jiaojiao Du. Water Conservation Capacity of Litter and Soil in Mixed Plantation of Pinus massoniana and Broadleaved Trees [J]. Scientia Silvae Sinicae, 2021, 57(11): 24-36. |
[13] | Peishan Zhao,Mishan Guo,Guanglei Gao,Guodong Ding,Ying Zhang. Characteristics of Community Structure and Functional Group of Fungi in Roots of Pinus sylvestris var. mongolica in the Horqin Sandy Land [J]. Scientia Silvae Sinicae, 2020, 56(9): 87-96. |
[14] | Haiqing Hu,Bizhen Luo,Sisheng Luo,Shujing Wei,Zhenshi Wang,Xiaochuan Li,Fei Liu. Research Progress on Effects of Forest Fire Disturbance on Carbon Pool of Forest Ecosystem [J]. Scientia Silvae Sinicae, 2020, 56(4): 160-169. |
[15] | Zongda Hu,Shirong Liu,Xingliang Liu,Mingxia Luo,Jing Hu,Yafei Li,Hao Yu,Dinghua Ou,Deyong Wu. Characterization of Soil Organic Carbon and Nitrogen Components in Three Natural Secondary Forests in Subalpine Regions of Western Sichuan, China [J]. Scientia Silvae Sinicae, 2020, 56(11): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||