Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (6): 61-74.doi: 10.11707/j.1001-7488.LYKX20240365
• Research papers • Previous Articles Next Articles
Chengwei Zhang1,Xing Wang2,3,Ke An4,Zihao Wu1,Jingyi Zhang5,6,Zekun Zhong5,*()
Received:
2024-06-17
Online:
2025-06-10
Published:
2025-06-26
Contact:
Zekun Zhong
E-mail:zhongzekun94@gmail.com
CLC Number:
Chengwei Zhang,Xing Wang,Ke An,Zihao Wu,Jingyi Zhang,Zekun Zhong. Leaf-Soil Ecological Stoichiometric Characteristics and Plant Homeostasis Differences of Reclaimed Vegetation in the Loess Hilly Region[J]. Scientia Silvae Sinicae, 2025, 61(6): 61-74.
Table 1
Basic information of the sampling sites"
研究区域 Study area | 植被类型 Revegetation type | 纬度 Latitude(N) | 经度 Longitude(E) | 海拔 Altitude/m | 坡度 Slope/(°) | 降雨量 Rainfall/mm | 蒸散量 Evaporation/ mm | 年均温 Annual temperature/℃ |
米脂县 Mizhi County | 刺槐人工林 Robinia pseudoacacia plantation | 37°45′37″ | 110°15′42″ | 1 056.0 | 15 | 418.1 | 1 771.5 | 8.5 |
灌木林 Shrubland | 37°51′33″ | 110°10′30″ | 1 088.0 | 25 | 418.1 | 1 771.5 | 8.5 | |
撂荒地 Abandoned land | 37°48′43″ | 110°10′41″ | 1 013.0 | 0 | 418.1 | 1 771.5 | 8.5 | |
宝塔区 Baota District | 刺槐人工林 Robinia pseudoacacia plantation | 36°39′17″ | 109°21′12″ | 1 262.5 | 25 | 456.1 | 1 618.2 | 9.9 |
灌木林 Shrubland | 36°39′33″ | 109°21′06″ | 1 262.0 | 23 | 456.1 | 1 618.2 | 9.9 | |
撂荒地 Abandoned land | 36°18′25″ | 109°20′47″ | 1 190.2 | 15 | 456.1 | 1 618.2 | 9.9 | |
富县 Fuxian County | 刺槐人工林 Robinia pseudoacaciaplantation | 35°05′35″ | 109°40′11″ | 1 201.6 | 14 | 532.7 | 1 484.1 | 9.5 |
灌木林 Shrubland | 35°13′34″ | 109°37′21″ | 1 288.6 | 0 | 532.7 | 1 484.1 | 9.5 | |
撂荒地 Abandoned land | 35°06′05″ | 109°35′14″ | 1 103.3 | 0 | 532.7 | 1 484.1 | 9.5 |
Table 2
Content and stoichiometric characteristics of leaf C, N, and P of different revegetation types along the aridity gradient"
研究区域 Study area | 干旱度 Aridity index | 植被类型 Revegetation type | 叶片碳含量 Leaf carbon content/ (g·kg?1) | 叶片氮含量 Leaf nitrogen content/ (g·kg?1) | 叶片磷含量 Leaf phosphorus content/ (g·kg?1) | 叶片碳氮比 Leaf carbon to nitrogen ratio | 叶片碳磷比 Leaf carbon to phosphorus ratio | 叶片氮磷比 Leaf nitrogen to phosphorus ratio |
米脂县 Mizhi County | 0.764 | 刺槐人工林 Robinia pseudoacacia plantation | 447.42±10.93Ab | 18.18±0.90Ba | 2.05±0.05Ab | 24.70±1.02Ac | 218.32±1.29Ab | 8.88±0.43Ca |
灌木林 Shrubland | 475.40±5.36Aa | 14.68±0.45Cb | 1.92±0.06Bb | 32.43±0.81Ab | 248.65±7.49Ba | 7.66±0.07Cb | ||
撂荒地 Abandoned land | 467.01±4.96Aab | 9.52±0.27Cc | 2.33±0.12Ba | 49.17±1.75Aa | 201.54±12.75Bb | 4.09±0.13Bc | ||
宝塔区 Baota District | 0.718 | 刺槐人工林 Robinia pseudoacacia plantation | 417.87±6.81Bb | 31.00±0.89Aa | 2.02±0.04Ac | 13.50±0.44Bb | 206.77±7.24Aa | 15.33±0.45Aa |
灌木林 Shrubland | 427.78±3.88Bab | 26.93±0.66Bb | 2.51±0.02Ab | 15.90±0.24Bb | 170.69±2.42Cb | 10.75±0.31Bb | ||
撂荒地 Abandoned land | 435.16±1.41Ba | 13.41±0.90Bc | 2.76±0.09Aa | 32.73±2.09Ba | 158.04±5.51Bb | 4.85±0.22Bc | ||
富县 Fuxian County | 0.641 | 刺槐人工林 Robinia pseudoacacia plantation | 449.68±5.27Ab | 28.94±0.11Aa | 2.06±0.02Aa | 15.54±0.13Bb | 218.07±4.21Ac | 14.03±0.16Bb |
灌木林 Shrubland | 480.07±5.85Aa | 31.04±0.88Aa | 1.52±0.01Cb | 15.49±0.50Bb | 315.89±3.27Aa | 20.44±0.70Aa | ||
撂荒地 Abandoned land | 474.21±2.92Aa | 16.42±0.72Ab | 1.86±0.12Ca | 28.98±1.12Ba | 257.68±17.85Ab | 8.95±0.84Ac |
Fig.2
Soil carbon, nitrogen, and phosphorus stoichiometric characteristics of different vegetation restoration types under various aridity levels Lowercase letters indicate significant differences between vegetation types within the same aridity level, while uppercase letters indicate significant differences between aridity levels within the same vegetation type (P<0.05)."
白建军, 史清亮. 柠条与沙棘共生固氮菌资源特性对比分析. 山西农业科学, 2008, (9): 49- 52.
doi: 10.3969/j.issn.1002-2481.2008.09.014 |
|
Bai J J, Shi Q L. A comparative analysis on resources characteristics of symbiotic nitrogen fixation strains of Peashrub and Hippophae. Journal of Shanxi Agricultural Sciences, 2008, (9): 49- 52.
doi: 10.3969/j.issn.1002-2481.2008.09.014 |
|
鲍士旦. 2000. 土壤农化分析. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil agricultural chemistry analysis. Beijing: China Agricultural Press. [in Chinese] | |
陈雅涵, 谢宗强. 保存过程对土壤生化指标的影响及保存土样的应用. 土壤学报, 2018, 55 (4): 783- 796. | |
Chen Y H, Xie Z Q. Effects of storage on soil biochemical properties and application of stored soil. Acta Pedologica Sinica, 2018, 55 (4): 783- 796. | |
邓 健, 张 丹, 张 伟, 等. 黄土丘陵区刺槐叶片-土壤-微生物碳氮磷化学计量学及其稳态性特征. 生态学报, 2019, 39 (15): 5527- 5535. | |
Deng J, Zhang D, Zhang W, et al. Carbon, nitrogen, and phosphorus stoichiometry and homeostasis characteristics of leaves, soil, and microbial biomass of Robinia pseudoacacia forests in the Loess Hilly Region of China. Acta Ecologica Sinica, 2019, 39 (15): 5527- 5535. | |
邓 强, 李 婷, 袁志友, 等. 黄土高原4种植被类型的细根生物量和年生产量. 应用生态学报, 2014, 25 (11): 3091- 3098. | |
Deng Q, Li T, Yuan Z Y et al. Fine root biomass and production of four vegetation types in Loess Plateau, China. Chinese Journal of Applied Ecology, 2014, 25 (11): 3091- 3098. | |
高子滢, 王海燕, 张亦凡. 土壤碳氮磷化学计量特征及其驱动因素. 浙江农林大学学报, 2024, 42 (3): 645- 656.
doi: 10.11833/j.issn.2095-0756.20240564 |
|
Gao Z Y, Wang H Y, Zhang Y F. Soil carbon, nitrogen and phosphorus stoichiometric characteristics and driving factors: a review. Journal of Zhejiang A& F University, 2024, 42 (3): 645- 656.
doi: 10.11833/j.issn.2095-0756.20240564 |
|
何茂松, 罗 艳, 彭庆文, 等. 新疆67种荒漠植物叶碳氮磷计量特征及其与气候的关系. 应用生态学报, 2019, 30 (7): 2171- 2180. | |
He M S, Luo Y, Peng Q W, et al. Leaf C: N: P stoichiometry of 67 plant species and its relations with climate factors across the deserts in Xinjiang, China. Chinese Journal of Applied Ecology, 2019, 30 (7): 2171- 2180. | |
李冬冬, 方 昭, 杜好田, 等. 黄土高原不同植被带草本植物叶片与土壤碳氮分布特征. 植物营养与肥料学报, 2019, 25 (5): 841- 850.
doi: 10.11674/zwyf.18141 |
|
Li D D, Fang Z, Du H T, et al. Distribution characteristics of carbon and nitrogen in herbaceous plants leaves and soil of different vegetation belts in the Loess Plateau. Journal of Plant Nutrition and Fertilizer, 2019, 25 (5): 841- 850.
doi: 10.11674/zwyf.18141 |
|
李明雨, 黄文广, 杨君珑, 等. 宁夏草原植物叶片氮磷化学计量特征及其驱动因素. 草业学报, 2019, 28 (2): 23- 32.
doi: 10.11686/cyxb2018459 |
|
Li M Y, Huang W G, Yang J L, et al. Factors influencing leaf nitrogen and phosphorus stoichiometry in plant species of Ningxia grasslands. Acta Prataculturae Sinica, 2019, 28 (2): 23- 32.
doi: 10.11686/cyxb2018459 |
|
李铭怡, 王 冉, 贾濠基, 等. 干旱胁迫下油菜素内酯对植物-土壤化学计量特征及内稳性的影响. 草地学报, 2024, 32 (4): 1068- 1077. | |
Li M Y, Wang R, Jia H J, et al. Effects of brassinosteroid on plant-soil stoichiometric characteristics and homeostasis under drought stress. Acta Agrestia Sinica, 2024, 32 (4): 1068- 1077. | |
李平平, 王彦辉, 段文标, 等. 黄土高原刺槐人工林立地指数变化及评价. 林业科学, 2023, 59 (4): 18- 31.
doi: 10.11707/j.1001-7488.LYKX20220621 |
|
Li P P, Wang Y H, Duan W B, et al. Variation and evaluation of site index of black locust plantations on the Loess Plateau of Northwest China. Scientia Silvae Sinicae, 2023, 59 (4): 18- 31.
doi: 10.11707/j.1001-7488.LYKX20220621 |
|
刘兴良, 肖 林, 宿以明, 等. 川西云杉人工林养分含量、贮量及分配的研究. 林业科学, 2001, 37 (4): 10- 18.
doi: 10.3321/j.issn:1001-7488.2001.04.003 |
|
Liu X L, Xiao L, Su Y M, et al. Concentration, storage and allocation of nutrient element in Picea balfourlana plantation of west Sichuan. Scientia Silvae Sinicae, 2001, 37 (4): 10- 18.
doi: 10.3321/j.issn:1001-7488.2001.04.003 |
|
李欣阳, 张娟娟, 周建云, 等. 宁南山区人工混交林叶片-凋落物-细根生态化学计量特征. 应用生态学报, 2023, 34 (11): 2889- 2897. | |
Li X Y, Zhang J J, Zhou J Y, et al. Ecological stoichiometry of leaf-litter-fine roots in mixed plantations in mountainous area of Southern Ningxia, China. Chinese Journal of Applied Ecology, 2023, 34 (11): 2889- 2897. | |
刘玉林, 朱广宇, 邓 蕾, 等. 黄土高原植被自然恢复和人工造林对土壤碳氮储量的影响. 应用生态学报, 2018, 29 (7): 2163- 2172. | |
Liu Y L, Zhu G Y, Deng L, et al. Effects of natural vegetation restoration and afforestation on soil carbon and nitrogen storage in the Loess Plateau, China. Chinese Journal of Applied Ecology, 2018, 29 (7): 2163- 2172. | |
刘亚楠, 陈晓娜, 郭 跃, 等. 沙旱生灌木对干旱胁迫的响应研究进展. 世界林业研究, 2023, 36 (5): 21- 26. | |
Liu Y N, Chen X N, Guo Y, et al. Research progress in response of sandy xerophytic shrubs to drought stress. World Forestry Research, 2023, 36 (5): 21- 26. | |
鲁如坤. 2000. 土壤农业化学分析方法. 北京: 中国农业科技出版社. | |
Lu R K. 2000. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press. [in Chinese] | |
苏卓侠, 苏冰倩, 上官周平. 2020. 黄土高原刺槐叶片-土壤生态化学计量参数对降雨量的响应特征. 生态学报, 40(19): 7000–7008. | |
Su Z X, Su B Q, Shangguan Z P. 2020. Response characteristics of Robinia pseudoacacia leaf and soil ecological stoichiometric parameters to precipitation in the Loess Plateau. Acta Ecologica Sinica, 40(19): 7000–7008. [in Chinese] | |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28 (8): 3937- 3947.
doi: 10.3321/j.issn:1000-0933.2008.08.054 |
|
Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008, 28 (8): 3937- 3947.
doi: 10.3321/j.issn:1000-0933.2008.08.054 |
|
王 稳, 高晓东, 赵西宁, 等. 黄土高原不同气候区刺槐林恢复年限对水、碳及植物多样性的影响. 生态学报, 2023, 43 (23): 9770- 9783. | |
Wang W, Gao X D, Zhao X N, et al. Effects of returning years of Robinia pseudoacacia forest on water, carbon and plant diversity in different climatic regions of the Loess Plateau. Acta Ecologica Sinica, 2023, 43 (23): 9770- 9783. | |
邢 伟, 刘 寒, 刘贵华. 生态化学计量学在水生态系统中的研究与应用. 植物科学学报, 2015, 33 (5): 608- 619.
doi: 10.11913/PSJ.2095-0837.2015.50608 |
|
Xing W, Liu H, Liu G H. Ecological stoichiometry in aquatic ecosystems: studies and applications. Plant Science Journal, 2015, 33 (5): 608- 619.
doi: 10.11913/PSJ.2095-0837.2015.50608 |
|
许淼平, 张欣怡, 李文杰, 等. 不同林龄刺槐叶片养分重吸收特征及其对土壤养分有效性的响应. 应用生态学报, 2020, 31 (10): 3357- 3364. | |
Xu M P, Zhang X Y, Li W J, et al. Leaf nutrient resorption characteristics of Robinia pseudoacacia at different ages and their response to soil nutrient availability. Chinese Journal of Applied Ecology, 2020, 31 (10): 3357- 3364. | |
薛智超, 甄 霖, 闫慧敏. 基于土地多功能的黄土丘陵沟壑区生态保护与发展情景评估及多主体模拟. 生态学报, 2023, 43 (15): 6081- 6098. | |
Xue Z C, Zhen L, Yan H M. The scenario assessment of ecological protection and development in the Loess Hilly and Gully area based on land use functions and agent based modelling. Acta Ecologica Sinica, 2023, 43 (15): 6081- 6098. | |
尹嘉德, 侯慧芝, 张绪成, 等. 全膜覆土下施有机肥对春小麦旗叶碳氮比、光合特性和产量的影响. 应用生态学报, 2020, 31 (11): 3749- 3757. | |
Yin J D, Hou H Z, Zhang X C, et al. Effects of organic fertilizer application on flag leaf C/N ratio, photosynthetic characteristics and yield of spring wheat with full plastic film mulching. Chinese Journal of Applied Ecology, 2020, 31 (11): 3749- 3757. | |
詹紫馨, 冯天骄, 梅柏寒, 等. 晋西黄土区典型植被恢复生态系统各层次化学计量与生态因子的关系. 浙江农林大学学报, 2024, 41 (4): 797- 809.
doi: 10.11833/j.issn.2095-0756.20230448 |
|
Zhan Z X, Feng T J, Mei B H, et al. Relationship between stoichiometry and ecological factors at various levels of typical vegetation restoration ecosystem in the loess area of western Shanxi Province. Journal of Zhejiang A& F University, 2024, 41 (4): 797- 809.
doi: 10.11833/j.issn.2095-0756.20230448 |
|
张婷婷, 刘文耀, 黄俊彪, 等. 植物生态化学计量内稳性特征. 广西植物, 2019, 39 (5): 701- 712.
doi: 10.11931/guihaia.gxzw201805050 |
|
Zhang T T, Liu W Y, Huang J B, et al. Characteristics of plant ecological stoichiometry homeostasis. Guihaia, 2019, 39 (5): 701- 712.
doi: 10.11931/guihaia.gxzw201805050 |
|
曾小红, 马焕成, 伍建榕, 等. 根瘤菌的抗旱性研究进展. 西南林学院学报, 2005, 25 (3): 80- 83. | |
Zeng X H, Ma H C, Wu J R, et al. Research advances in drought-resistance of rhizobium. Journal of Southwest Forestry College, 2005, 25 (3): 80- 83. | |
张 勇, 吴翠蓉, 高海力, 等. 香榧幼龄林叶片与土壤碳氮磷的生态化学计量特征. 中南林业科技大学学报, 2022, 42 (1): 104- 110,119. | |
Zhang Y, Wu C R, Gao H L, et al. The stoichiometric characteristics of carbon, nitrogen and phosphorous in soil and leaves of Torreya grandis at different ages. Journal of Central South University of Forestry & Technology, 2022, 42 (1): 104- 110,119. | |
张雨鉴, 王克勤, 宋娅丽, 等. 滇中亚高山5种林型土壤碳氮磷生态化学计量特征. 生态环境学报, 2019, 28 (1): 73- 82. | |
Zhang Y J, Wang K Q, Song Y L, et al. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in five forest types in subalpine of middle Yunnan Province. Ecology and Environmental Sciences, 2019, 28 (1): 73- 82. | |
钟泽坤, 杨改河, 任成杰, 等. 黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征. 环境科学, 2021, 42 (1): 411- 421. | |
Zhong Z K, Yang G H, Ren C J, et al. Effects of farmland abandonment on soil enzymatic activity and enzymatic stoichiometry in the Loess Hilly Region, China. Environmental Science, 2021, 42 (1): 411- 421. | |
周正虎, 王传宽. 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 2016, 40 (6): 620- 630.
doi: 10.17521/cjpe.2015.0449 |
|
Zhou Z H, Wang C K. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry. Chinese Journal of Plant Ecology, 2016, 40 (6): 620- 630.
doi: 10.17521/cjpe.2015.0449 |
|
Bussotti F, Borghini F, Celesti C, et al. Leaf morphology and macronutrients in broadleaved trees in central Italy. Trees, 2000, 14 (7): 361- 368.
doi: 10.1007/s004680000056 |
|
Cui Y X, Wang X, Zhang X C, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology and Biochemistry, 2020, 147, 107814.
doi: 10.1016/j.soilbio.2020.107814 |
|
da Silva E C, Nogueira R, da Silva M A, et al. Drought stress and plant nutrition. Plant stress, 2011, 5 (1): 32- 41. | |
Elrys A S, El-Maati M F A, Dan X Q, et al. Aridity creates global thresholds in soil nitrogen retention and availability. Global Change Biology, 2024, 30 (1): e17003.
doi: 10.1111/gcb.17003 |
|
Elser J J, Fagan W F, Kerkhoff A J, et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 2010, 186 (3): 593- 608.
doi: 10.1111/j.1469-8137.2010.03214.x |
|
Elser J J, Urabe J. The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 1999, 80 (3): 735- 751.
doi: 10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2 |
|
Gu Q, Zamin T J, Grogan P. Stoichiometric homeostasis: a test to predict tundra vascular plant species and community-level responses to climate change. Arctic Science, 2017, 3 (2): 320- 333.
doi: 10.1139/as-2016-0032 |
|
Hu W G, Ran J Z, Dong L W, et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 2021, 12 (1): 5350.
doi: 10.1038/s41467-021-25641-0 |
|
Julian P, Gerber S, Bhomia R K, et al. Understanding stoichiometric mechanisms of nutrient retention in wetland macrophytes: stoichiometric homeostasis along a nutrient gradient in a subtropical wetland. Oecologia, 2020, 193 (4): 969- 980.
doi: 10.1007/s00442-020-04722-9 |
|
Koerselman W, Meuleman A F M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33 (6): 1441- 1450.
doi: 10.2307/2404783 |
|
Li Y F, Li Q Y, Guo D Y, et al. Ecological stoichiometry homeostasis of Leymus chinensis in degraded grassland in western Jilin Province, NE China. Ecological Engineering, 2016, 90, 387- 391.
doi: 10.1016/j.ecoleng.2016.01.079 |
|
Liang H B, Li Y N, An X X, et al. Soil moisture dynamics and its temporal stability under different-aged Caragana korshinskii shrubs in the Loess Hilly Region of China. Water, 2023, 15 (13): 2334.
doi: 10.3390/w15132334 |
|
Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 2005, 8 (6): 636- 642.
doi: 10.1111/j.1461-0248.2005.00759.x |
|
Nobile C M, Bravin M N, Becquer T, et al. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 2020, 239, 124709.
doi: 10.1016/j.chemosphere.2019.124709 |
|
Persson J, Fink P, Goto A, et al. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 2010, 119 (5): 741- 751.
doi: 10.1111/j.1600-0706.2009.18545.x |
|
Sardans J, Peñuelas J. Hydraulic redistribution by plants and nutrient stoichiometry: shifts under global change. Ecohydrology, 2014, 7 (1): 1- 20.
doi: 10.1002/eco.1459 |
|
Sardans J, Peñuelas J , Estiarte M, et al. 2008. Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Global Change Biology, 14(10): 2304–2316. | |
Spohn M. Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic and Applied Ecology, 2016, 17 (6): 471- 478.
doi: 10.1016/j.baae.2016.05.003 |
|
Sterner R W, Elser J J. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton: Princeton University Press. | |
Su Z X, Su B Q, Mao S L, et al. Leaf C: N: P stoichiometric homeostasis of a Robinia pseudoacacia plantation on the Loess Plateau. Journal of Forestry Research, 2022, 34 (4): 929- 937. | |
Wang C Y, Yu M H, Ding G D, et al. Effect of rainfall on Artemisia ordosica Krasch anual net primary production and allocation in sandy land in China. Ecological Indicators, 2021, 130, 108023.
doi: 10.1016/j.ecolind.2021.108023 |
|
Yang S B, Feng C, Ma Y H, et al. Transition from N to P limited soil nutrients over time since restoration in degraded subtropical broadleaved mixed forests. Forest Ecology and Management, 2021, 494, 119298.
doi: 10.1016/j.foreco.2021.119298 |
|
Yu Q A, Elser J J, He N P, et al. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 2011, 166 (1): 1- 10.
doi: 10.1007/s00442-010-1902-z |
|
Zechmeister-Boltenstern S, Keiblinger K M, Mooshammer M, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 2015, 85 (2): 133- 155.
doi: 10.1890/14-0777.1 |
|
Zhang H, Li X, Wang S Q, et al. Tree-litter-soil system C: N: P stoichiometry and tree organ homeostasis in mixed and pure Chinese fir stands in south subtropical China. Frontiers in Forests and Global Change, 2024, 7, 1293439.
doi: 10.3389/ffgc.2024.1293439 |
|
Zhang S L, Huffman T, Zhang X Y, et al. Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus. Journal of soils and sediments, 2014, 14 (11): 1775- 1789.
doi: 10.1007/s11368-014-0935-z |
|
Zhang W, Xu Y D, Gao D X, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biology and Biochemistry, 2019, 134, 1- 14.
doi: 10.1016/j.soilbio.2019.03.017 |
|
Zhao M, Dai Q H, Zhu L K, et al. Influence of vegetation types on the C, N, and P stoichiometric characteristics of litter and soil and soil enzyme activity in karst ecosystems. Forests, 2023, 14 (4): 771.
doi: 10.3390/f14040771 |
|
Zhong Z K, Wu S J, Lu X Q, et al. Organic carbon, nitrogen accumulation, and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China. Catena, 2021, 196, 104867.
doi: 10.1016/j.catena.2020.104867 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||