Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (10): 135-145.doi: 10.11707/j.1001-7488.LYKX20240656
• Research papers • Previous Articles
Jiangtao Guo1,Jingjing Peng2,Xin Ma2,Fan Liu2,Yongxiu Xia2,*(
)
Received:2024-11-05
Online:2025-10-25
Published:2025-11-05
Contact:
Yongxiu Xia
E-mail:qjdhtynite@163.com
CLC Number:
Jiangtao Guo,Jingjing Peng,Xin Ma,Fan Liu,Yongxiu Xia. Responses of Poplar Plantations in Northern China Sandy Land to Conventional Fertilization and Drip Fertigation[J]. Scientia Silvae Sinicae, 2025, 61(10): 135-145.
Table 1
Experimental design and treatments"
| 灌溉方式 Irrigation | 施肥类型 Types of fertilizer | 处理 Treatment |
| 常规灌溉 Conventional irrigation | 不施肥 No fertilization | 常规灌溉?不施肥 Conventional irrigation?no fertilization,CI-F0M0 |
| 有机粪肥 Organic manure | 常规灌溉?施有机粪肥 Conventional irrigation?organic manure,CI-F0M1 | |
| 控释肥 Controlled-release fertilizer | 常规灌溉?施控释肥 Conventional irrigation?controlled-release fertilize, CI-FcM0 | |
| 控释肥+有机粪肥 Controlled-release fertilizer and organic manure | 常规灌溉?施控释肥+有机粪肥 Conventional irrigation?controlled-release fertilizer and organic manure,CI-FcM1 | |
| 水溶肥 Water-soluble fertilizer | 常规灌溉?施水溶肥 Conventional irrigation?water-soluble fertilize,CI-FNPKM0 | |
| 水溶肥+有机粪肥 Water-soluble fertilizer and organic manure | 常规灌溉?施水溶肥+有机粪肥 Conventional irrigation?water-soluble fertilizer and organic manure,CI-FNPKM1 | |
| 滴灌 Drip irrigation | 不施肥 No fertilization | 滴灌?不施肥 Drip irrigation?no fertilization,DI-F0M0 |
| 有机粪肥 Organic manure | 滴灌?施有机粪肥 Drip irrigation?organic manure,DI-F0M1 | |
| 控释肥 Controlled-release fertilizer | 滴灌?施控释肥 Drip irrigation?controlled-release fertilize,DI-FcM0 | |
| 控释肥+有机粪肥 Controlled-release fertilizer and organic manure | 滴灌?施控释肥+有机粪肥 Drip irrigation?controlled-release fertilizer and organic manure,DI-FcM1 | |
| 水溶肥 Water-soluble fertilizer | 滴灌?施水溶肥 Drip irrigation?water-soluble fertilizer,DI-FNPKM0 | |
| 水溶肥+有机粪肥 Water-soluble fertilizer and organic manure | 滴灌?施水溶肥+有机粪肥 Drip irrigation?water-soluble fertilizer and organic manure,DI-FNPKM1 |
Table 2
Analysis of variance on split plot design of diameter at breast height growth"
| 项目Item | df | SS | MS | F | P | |
| 区组Group | 3 | 0.044 | 0.015 | 0.608 | 0.654 | |
| 主区部分Primary area | 灌溉方式Irrigation methods | 1 | 3.797 | 3.797 | 157.565** | 0.001 |
| 误差Error | 3 | 0.072 | 0.024 | — | — | |
| 肥料种类Types of fertiliter | 5 | 1.536 | 0.307 | 14.835** | 0.001 | |
| 副区部分Split plot | 灌溉方式× 肥料种类Irrigation × types of fertiliter | 5 | 0.664 | 0.133 | 6.416** | 0.001 |
| 误差Error | 30 | 0.621 | 0.021 | — | — | |
Table 3
The effects of conventional fertilization and drip fertigation on the physical and chemical properties of soil in poplar plantation"
| 处理 Treatment | pH | 有机质 Organic matter/(g·kg?1) | 碱解氮 Alkaline hydrolytic N/(mg·kg?1) | 有效磷 Available P/(mg·kg?1) | 速效钾 Available K/(mg·kg?1) | |
| 主区 Primary area | CI | 8.79a | 3.91b | 35.92b | 8.00b | 66.44b |
| DI | 8.66b | 5.12a | 68.93a | 28.08a | 80.69b | |
| 副区 Split plot | F0M0 | 9.02a | 3.51b | 32.79d | 3.50d | 30.04e |
| F0M1 | 9.02a | 5.4a | 72.87b | 11.25c | 64.54d | |
| FcM0 | 8.43d | 4.73a | 99.70a | 13.75b | 98.54a | |
| FcM1 | 8.39d | 3.73b | 34.18d | 29.47a | 88.96b | |
| FNPKM0 | 8.70c | 4.87a | 44.52c | 10.62c | 67.81d | |
| FNPKM1 | 8.81b | 4.85a | 25.80e | 14.88b | 64.54d | |
| CI | F0M0 | 9.00 ± 0.06ab | 3.11 ± 0.34de | 24.10 ± 2.69i | 3.60 ± 0.20j | 39.03 ± 1.25g |
| F0M1 | 8.99 ± 0.05ab | 4.50 ± 0.47c | 52.80 ± 6.15d | 9.90 ± 0.20g | 82.07 ± 2.70c | |
| FcM0 | 8.40 ± 0.14f | 3.90 ± 0.74cd | 38.80 ± 5.45f | 5.13 ± 0.31i | 47.10 ± 1.10f | |
| FcM1 | 8.87 ± 0.09bcd | 3.62 ± 0.73cde | 28.70 ± 7.05h | 8.8 ± 0.46h | 67.93 ± 0.47d | |
| FNPKM0 | 8.61 ± 0.16e | 5.41 ± 0.45b | 42.87 ± 5.11e | 10.00 ± 0.36fg | 80.50 ± 2.29c | |
| FNPKM1 | 8.89 ± 0.03bc | 2.91 ± 0.37e | 28.27 ± 2.66h | 10.57 ± 0.31f | 82.03 ± 1.85c | |
| DI | F0M0 | 9.04 ± 0.07a | 3.91 ± 0.70cd | 21.10 ± 3.10j | 3.40 ± 0.25j | 39.07 ± 0.31g |
| F0M1 | 9.04 ± 0.05a | 6.30 ± 0.33ab | 21.10 ± 1.00j | 12.60 ± 0.60d | 47.03 ± 0.74f | |
| FcM0 | 8.46 ± 0.04f | 5.56 ± 0.57b | 113.43 ± 8.75b | 22.33 ± 0.25b | 150.00 ± 1.68a | |
| FcM1 | 7.91 ± 0.06g | 3.84 ± 0.39cde | 165.10 ± 8.92a | 50.13 ± 0.21a | 110.00 ± 2.70b | |
| FNPKM0 | 8.79 ± 0.07cd | 4.33 ± 0.55c | 32.23 ± 5.60g | 11.23 ± 0.42e | 55.13 ± 1.22e | |
| FNPKM1 | 8.73 ± 0.06de | 6.80 ± 0.43a | 60.63 ± 5.17c | 20.77 ± 0.35c | 82.93 ± 2.65c | |
| 戴腾飞, 席本野, 闫小莉, 等. 施肥方式和施氮量对欧美 108 杨人工林土壤氮素垂向运移的影响. 应用生态学报, 2015, 26 (6): 1641- 1648. | |
| Dai T F, Xi B Y, Yan X L, et al. Effects of fertilization method and nitrogen application rate on soil nitrogen vertical migration in a Populus × euramericana cv. ‘Guariento’ plantation. Chinese Journal of Applied Ecology, 2015, 26 (6): 1641- 1648. | |
| 傅建平. 2013. 杨树人工林滴灌技术研究. 北京: 中国林业科学研究院. | |
| Fu J P. 2013. Research on drip irrigation techniques for developing poplar plantation. Beijing: Chinese Academy of Forestry. [in Chinese] | |
| 贺曰林. 2021. 毛白杨S86 人工林根区滴灌施肥及水氮调控机制研究. 北京: 北京林业大学. | |
| He Y L. Research on the drip irrigation-nitrogen fertigation and mechanism of water-nitrogen regulation in root zone for populus tomentosa S86 paltation. Beijing: Beijing Forestry University. [in Chinese] | |
| 贺 勇. 2015. 滴灌栽培杨树幼林N、P、K施肥效应研究. 北京: 中国林业科学研究院. | |
| He Y. 2015. Research on drip fertigation effects of N, P, K for developing poplar plantation. Beijing: Chinese Academy of Forestry. [in Chinese] | |
| 胡建文, 王庆成, 马双娇. 人工林精准施肥研究进展. 世界林业研究, 2020, 33 (4): 37- 42. | |
| Hu J W, Wang Q C, Ma S J. Research advances in precision fertilization regime for plantation forests. World Forestry Research, 2020, 33 (4): 37- 42. | |
| 黄绍敏. 2006. 长期不同施肥模式下潮土肥力演变规律与持续利用研究. 郑州: 河南农业大学. | |
| Huang S M. 2006. Study on fertility evolution and sustainable utilization of fluvo-aquic soil under different long-term fertilization patterns. Zhengzhou: Henan Agricultural University. [in Chinese] | |
| 焦盼盼. 2023. 水分变化对黄土高原典型土壤有机碳矿化影响的微生物作用机制. 北京: 中国科学院大学. | |
| Jiao P P. 2023. Mechanisms of microbial effects of water change on organic carbon mineralization of typical soil on the Loess Plateau. Beijing: University of Chinese Academy of Science. [in Chinese] | |
| 李 格. 2023. 土壤水分稳定性影响番茄和玉米生长发育和产量的生理生态机制. 北京: 中国农业科学研究院. | |
| Li G. 2023. Eco-physiological mechanisms of soil moisture stability affecting the growth, development and yield of tomato(Solanum lycopersicum L. ) and maize (Zea mays L.). Beijing: Chinese Academy of Agriculture Science. [in Chinese] | |
| 刘俊松, 吴雅萍, 左思杰, 等. 控释肥养分释放机理及其影响因素研究进展. 湖北大学学报(自然科学版), 2020, 42 (4): 464- 470. | |
| Liu J S, Wu Y P, Zuo S J, et al. Research advances on nutrients release mechanisms and influencing factors in controlled release fertilizers. Journal of Hubei University (Natural Science), 2020, 42 (4): 464- 470. | |
|
刘 明, 张 民, 杨越超, 等. 控释肥残膜对小麦各生育期土壤微生物和酶活性的影响. 植物营养与肥料学报, 2011, 17 (4): 1012- 1017.
doi: 10.11674/zwyf.2011.0424 |
|
|
Liu M, Zhang M, Yang Y C, et al. Effects of controlled-release fertilizer coating residual on soil microbial quantity and enzyme activity. Plant Nutrition and Fertilizer Science, 2011, 17 (4): 1012- 1017.
doi: 10.11674/zwyf.2011.0424 |
|
|
罗治建, 陈卫文, 鲁剑巍, 等. 江汉平原杨树人工林的施肥方式. 东北林业大学学报, 2005, 4 (4): 98- 99.
doi: 10.3969/j.issn.1000-5382.2005.04.035 |
|
|
Luo Z J, Chen W W, Lu J W, et al. Fertilizer application method for poplar plantation in Jianghan Plain. Journal of Northeast Forestry University, 2005, 4 (4): 98- 99.
doi: 10.3969/j.issn.1000-5382.2005.04.035 |
|
| 毛健辉, 张健朗, 霍春宇, 等. 滴灌施肥对桉树人工林土壤酶活性和细菌群落组成的影响. 中南林业科技大学学报, 2024, 44 (6): 81- 91. | |
| Mao J H, Zhang J L, Huo C Y, et al. Effects of drip fertilization on soil enzyme activities and bacterial community composition in Eucalyptus artificial forest. Journal of Central South University of Forestry & Technology, 2024, 44 (6): 81- 91. | |
| 秘洪雷, 秦杏宇, 兰再平, 等. 灌溉方式对杨树人工林细根分布特征的影响. 水土保持通报, 2021, 41 (5): 23- 29. | |
| Mi H L, Qin X Y, Lan Z P, et al. Effects of irrigation methods on fine root distribution of poplar plantations. Bulletin of Soil and Water Conservation, 2021, 41 (5): 23- 29. | |
| 秦杏宇, 吕馥龄, 彭晶晶等. 2020. 滴灌与沟灌栽培杨树人工林土壤水分动态与生产力. 应用生态学报, 31(5): 1535–1542. | |
| Qin X Y, Lv F L, Peng J J, et al. Soil moisture dynamics and productivity of poplar plantations under drip and furrow irrigation managements. Chinese Journal of Applied Ecology, 31(5): 1535–1542. [in Chinese] | |
| 陶 磊, 褚贵新, 刘 涛, 等. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响. 生态学报, 2014, 34 (21): 6137- 6146. | |
| Tao L, Chu G X, Liu T, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition. Acta Ecologica Sinica, 2014, 34 (21): 6137- 6146. | |
| 王文波, 王延平, 王华田, 等. 杨树人工林连作与轮作对土壤氮素细菌类群和氮素代谢的影响. 林业科学, 2016, 52 (5): 45- 54. | |
| Wang W B, Wang Y P, Wang H T, et al. Effects of different continuous cropping and rotation of poplar plantation on soil nitrogen bacteria community and nitrogen metabolism. Scientia Silvae Sinicae, 2016, 52 (5): 45- 54. | |
| 杨才艳, 杨 航, 王慧楠, 等. 2024. 燕麦种植年限对土壤理化性质和酶活性的影响. 草原与草坪, https: //link. cnki. net/urlid/62.1156. S. 20241128.1823. 002. | |
| Yang C Y. 2024. Effects of Avena sativa planting years on soil physical and chemical properties and enzyme activities. Grassland and Turf, https://link.cnki.net/urlid/62.1156.S.20241128.1823.002. [in Chinese] | |
|
杨承栋. 我国人工林土壤有机质的量和质下降是制约林木生长的关键因子. 林业科学, 2016, 52 (12): 1- 12.
doi: 10.11707/j.1001-7488.20161201 |
|
|
Yang C D. Decline of quantity and quality of soil organic matter is the key factor restricting the growth of plantation in China. Scientia Silvae Sinicae, 2016, 52 (12): 1- 12.
doi: 10.11707/j.1001-7488.20161201 |
|
| 张建龙. 2019. 中国森林资源报告. 北京: 中国林业出版社. | |
| Zhang J L. 2019. National forestry and grassland administration. Beijing: China Forestry Publishing House. [in Chinese] | |
|
张 毅, 刘 颖, 程存刚, 等. 牛粪与化肥配施比例对苹果园土壤有机碳库和酶活性的影响. 中国农业科学, 2024, 57 (20): 4107- 4118.
doi: 10.3864/j.issn.0578-1752.2024.20.015 |
|
|
Zhang Y, Liu Y, Cheng C G, et al. Effects of combined application proportion of cow manure and chemical fertilizer on soil organic carbon pool and enzyme activity in apple orchard. Scientia Agricultura Sinica, 2024, 57 (20): 4107- 4118.
doi: 10.3864/j.issn.0578-1752.2024.20.015 |
|
|
Bünemann E K, Bongiorno G, Bai Z G, et al. Soil quality: a critical review. Soil Biology and Biochemistry, 2018, 120, 105- 125.
doi: 10.1016/j.soilbio.2018.01.030 |
|
|
Jiang G Y, Zhang W J, Xu M G, et al. Manure and mineral fertilizer effects on crop yield and soil carbon sequestration: a meta-analysis and modeling across China. Global Biogeochemical Cycles, 2018, 32 (11): 1659- 1672.
doi: 10.1029/2018GB005960 |
|
| Li X, Qiao L, Huang Y P, et al. 2023. Manuring improves soil health by sustaining multifunction at relatively high levels in subtropical area. Agriculture, Ecosystems & Environment, 353: 108539. | |
|
Liu C Z, Han X Z, Lu X C, et al. Response of soil enzymatic activity to pore structure under inversion tillage with organic materials incorporation in a Haplic Chernozem. Journal of Environmental Management, 2024, 370, 122421.
doi: 10.1016/j.jenvman.2024.122421 |
|
|
Luo G W, Li L, Friman V P, et al. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: a meta-analysis. Soil Biology and Biochemistry, 2018, 124, 105- 115.
doi: 10.1016/j.soilbio.2018.06.002 |
|
|
Wingfield M J, Brockerhoff E G, Wingfield B D, et al. Planted forest health: The need for a global strategy. Science, 2015, 349 (6250): 832- 836.
doi: 10.1126/science.aac6674 |
|
|
Wittwer R A, Bender S F, Hartman K, et al. Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 2021,
doi: 10.1126/sciadv.abg6995 |
|
|
Xi B Y, Bloomberg M, Watt M S, et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the north China Plain. Agricultural Water Management, 2016, 176, 243- 254.
doi: 10.1016/j.agwat.2016.06.017 |
|
|
Zhang X, Liu Y, Zhang Z Y, et al. Soil moisture influences wheat yield by affecting root growth and the composition of microbial communities under drip fertigation. Agricultural Water Management, 2024, 305, 109102.
doi: 10.1016/j.agwat.2024.109102 |
|
|
Zhang X D, Zhao J, Yang L C, et al. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crops Research, 2019, 233, 121- 130.
doi: 10.1016/j.fcr.2019.01.009 |
| [1] | Dewei Wang,Decheng Wang,Xufeng Wang,Yu Fu,Xuening Zhang,Qian Xi. Preliminary Report on the Effect of Root Cutting and Fertilization on the Root Development of Xinjiang Jujube Tree [J]. Scientia Silvae Sinicae, 2025, 61(9): 236-244. |
| [2] | Lei Zhang,Xinglu Zhou,Lijuan Wang,Jianjun Hu. Advance of Poplar Molecular Breeding with Insect Resistance and Transgenic Biosafety Assessment Research [J]. Scientia Silvae Sinicae, 2025, 61(2): 190-203. |
| [3] | Lingyu Yang,Wenguang Shi,Zhibin Luo. Characteristics of Ectomycorrhizal Fungi Paxillus involutus Promoting Nitrogen Uptake and Utilization of Its Host Populus tremula × Populus alba [J]. Scientia Silvae Sinicae, 2024, 60(9): 69-79. |
| [4] | Xiaolin Qiu,Shumin Wang,Lu Yu,Yuchen Yang,Dianguang Xiong,Chengming Tian. Functional of SNARE Protein CcNyv1 in Cytospora chrysosperma [J]. Scientia Silvae Sinicae, 2024, 60(9): 90-98. |
| [5] | Yingqi He,Lufei Wang,Yamei Zhang,Yanglun Yu,Wenji Yu. Effect of Compression Ratios on the Surface Hardness of Poplar Wood Scrimber [J]. Scientia Silvae Sinicae, 2024, 60(9): 141-149. |
| [6] | Aoyu Wang,Youzheng Guo,Tan Deng,Yang Liu,Nan Di,Jie Duan,Ximeng Li,Benye Xi. Comparison of Several Methods for Evaluating Plant Water Regulation Strategies [J]. Scientia Silvae Sinicae, 2024, 60(8): 109-119. |
| [7] | Shuai Chen,Hongzhong Dang,Yingming Zhao,Yaru Huang,Mingyang Li,Chunying Liu. Azimuthal Variation in Water Transport in Tree Trunks of Shelterbelt Forests of Oasis Farmland [J]. Scientia Silvae Sinicae, 2024, 60(7): 73-80. |
| [8] | Kong Yue,Xiang Li,Xinlei Shi,Xuekai Jiao,Peng Wu,Zhongfeng Zhang,Guoliang Dong,Yuanjin Fang. Effects of Thermal Pretreatment on Lateral Performance of Poplar Cross-Laminated Timber Shear Walls [J]. Scientia Silvae Sinicae, 2024, 60(7): 117-128. |
| [9] | Lei Xu,Xiaoyun Wu,Jiang Lü,Yun Shi,Mengxun Zhu,Hang Xu,Zhiqiang Zhang. Impacts of Diffuse Radiation Fraction on Energy Partitioning in a Poplar Plantation in the North China Plain [J]. Scientia Silvae Sinicae, 2024, 60(3): 100-110. |
| [10] | Meihong Liu,Qiming Yan,Longbo Zi,Yafang Lei,Li Yan. Physical and Mechanical Properties of Furfuryl Alcohol-Epoxidized Vegetable Oils Composite Modified Poplar Wood [J]. Scientia Silvae Sinicae, 2024, 60(11): 149-159. |
| [11] | Jiaming Wan,Jiang Lü,Yun Shi,Hang Xu,Zhiqiang Zhang. Effects of Diffuse Radiation on the Gross Primary Productivity of a Poplar Plantation [J]. Scientia Silvae Sinicae, 2023, 59(5): 1-10. |
| [12] | Ye Wang,Guangde Li,Guobin Liu,Ting Liao,Liqin Guo,Yanwu Yao,Jun Cao. Plasticity Responses of Phenological Characteristics and Tree Growth of Populus tomentosa Plantation to Fertilization [J]. Scientia Silvae Sinicae, 2023, 59(5): 32-40. |
| [13] | Lu Han,Han Zhao,Wei Wang,Wenhui Liu,Zaimin Jiang,Jing Cai. Hydraulic Vulnerability Segmentation and Its Correlation with Growth in Hybrid Poplar [J]. Scientia Silvae Sinicae, 2023, 59(3): 94-103. |
| [14] | Weifeng Wang,Yuqi Zhao,Miaoqin Gao,Yuzheng Zong,Xingyu Hao. Leaf Photosynthesis and Carbon and Nitrogen Distribution of Populus×popularis‘35-44’ Young Cuttings in Response to Elevated CO2 Concentration and Temperature [J]. Scientia Silvae Sinicae, 2023, 59(2): 40-47. |
| [15] | Ruirui Zhao,Yong Liu,Kai Wang. Effects of Biochar and Manure on Wood Decomposition and Soil Enzyme Activities Related Soil Nutrient Cycling in a triploid Populus tomentosa Plantation [J]. Scientia Silvae Sinicae, 2023, 59(11): 1-11. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||