Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (12): 120-127.doi: 10.11707/j.1001-7488.LYKX20230381
Previous Articles Next Articles
Jixin Tang1,2,Qilong Pan1,2,Heng Liu1,2,Zuwei Tian1,2,*,Dongcheng Chen1,3,Dewei Huang1,Shiyu Mo1,Zhilin Jiang1
Received:
2023-08-29
Online:
2024-12-25
Published:
2025-01-02
Contact:
Zuwei Tian
CLC Number:
Jixin Tang,Qilong Pan,Heng Liu,Zuwei Tian,Dongcheng Chen,Dewei Huang,Shiyu Mo,Zhilin Jiang. Variation Law of Growth Strain in Standing Trees of Castanopsis hystrix Plantation and the Influence of Growth Weakening[J]. Scientia Silvae Sinicae, 2024, 60(12): 120-127.
Table 1
Overview of experimental forests of C. hystrix experimental forests"
实验林 Experimental forests | 树龄 Age/a | 林分密度 Stand density/ (tree·hm?2) | 郁闭度 Canopy density | 平均胸径 Average DBH/cm | 平均树高 Average tree height/m | 海拔 Altitude/ m | 坡度 Slope/(°) | 土壤类型 Soil type |
I | 44 | 720 | 0.9 | 24.2±8.1 | 20.0±3.9 | 700 | 25 | 赤红壤 Lateritic red soil |
II | 20 | 615 | 0.8 | 19.4±0.2 | 15.9±0.6 | 590 | 16 | 赤红壤 Lateritic red soil |
III | 17 | 965 | 0.8 | 14.8±1.8 | 14.2±1.1 | 230 | 18 | 紫色土Purple soil |
IV | 14 | 515 | 0.8 | 12.9±3.1 | 16.4±2.5 | 550 | 15 | 赤红壤 Lateritic red soil |
Table 2
Variability of growth strain in standing trees of C. hystrix plantation with different dominance grades"
生长势等级 Dominance grades | 样木数量 Quantity of sample trees | 平均胸径 Average DBH/cm | 平均树高 Average tree height/m | 生长应变均值 Mean growth strain/μm | 生长应变极小值 Min. growth strain/μm | 生长应变极大值 Max. growth strain/μm | 变异系数 Coefficient variation (%) |
A | 12 | 24.3±2.1 | 22.7±1.3 | 115.5±51.7 a | 62 | 213 | 44.8 |
B | 13 | 21.8±2.7 | 20.2±1.8 | 93.4±28.5 a | 42 | 143 | 34.2 |
C | 4 | 19.2±2.4 | 16.6±2.1 | 88.0±25.2 ab | 56 | 115 | 28.7 |
D | 7 | 18.4±3.2 | 15.6±2.7 | 46.3±12.9 b | 19 | 62 | 29.5 |
Table 3
Seasonal variability of growth strain in the standing trees of C. hystrix plantation"
季节 Seasons | 样木数量 Quantity of sample trees | 生长应变均值 Mean growth strain/μm | 生长应变极小值 Min. growth strain/μm | 生长应变极大值 Max. growth strain/μm | 变异系数 Coefficient variation (%) |
夏季Summer(2021?07) | 21 | 90.1±28.1 a | 47 | 150 | 31.1 |
秋季Autumn(2021?10) | 21 | 66.1±15.5 b | 41 | 105 | 23.4 |
冬季Winter(2022?01) | 21 | 69.5±22.1 b | 40 | 131 | 31.8 |
春季Spring(2022?03) | 21 | 59.1±17.7 b | 28 | 112 | 30.0 |
Table 4
Pearson correlation between growth strain in the standing trees of C. hystrix plantation and monthly mean meteorological factors"
样木数量 Quantity of sample trees | 平均土壤湿度 Average soil moisture(%) | 平均土壤温度 Average soil temperature/℃ | 平均空气温度 Average air temperature/℃ | 平均空气相对湿度 Average air relative humidity(%) | 月降水量 Monthly precipitation/mm |
21 | ?0.352** | 0.260* | 0.324** | ?0.270* | 0.281** |
Table 5
Variability of growth strain in the standing trees of C. hystrix plantation with tree age"
树龄 Tree age/a | 样木数量 Quantity of sample trees | 平均胸径 Average DBH/cm | 平均树高Average tree height/m | 生长应变均值 Mean growth strain/μm | 生长应变极小值 Min. growth strain/μm | 生长应变极大值 Max. growth strain/μm | 变异系数 Coefficient variation (%) |
15 | 17 | 17.2±3.1 | 17.5±1.2 | 48.5±20.0 c | 21 | 90 | 41.3 |
18 | 14 | 17.5±2.6 | 17.0±1.5 | 58.8±29.7 bc | 13 | 142 | 50.4 |
21 | 11 | 18.9±1.9 | 17.6±1.9 | 84.0±25.8 ab | 51 | 139 | 30.7 |
45 | 16 | 24.0±2.1 | 21.9±1.9 | 93.5±43.7 a | 47 | 222 | 46.7 |
Table 6
Correlation between growth strain and growth parameters in the standing trees of C. hystrix plantation with tree age"
控制变量 Control variate | 项目 Project | 生长应变 Growth strain | 胸径 DBH | 树高 Tree height | 高径比 Tree height/DBH | 树龄 Tree age | |
无 Invariant | 生长应变Growth strain | 相关性Correlation | 1.000 | 0.297 | 0.277 | ?0.259 | 0.451 |
显著性Significance | - | 0.023 | 0.035 | 0.049 | 0.000 | ||
自由度df | 0 | 56 | 56 | 56 | 56 | ||
树龄 Tree age | 相关性Correlation | 0.451 | 0.777 | 0.764 | ?0.550 | 1.000 | |
显著性Significance | 0.000 | 0.000 | 0.000 | 0.000 | - | ||
自由度df | 56 | 56 | 56 | 56 | 0 | ||
树龄 Tree age | 生长应变Growth strain | 相关性Correlation | 1.000 | ?0.094 | ?0.117 | ?0.015 | - |
显著性Significance | - | 0.485 | 0.387 | 0.912 | - | ||
自由度df | 0 | 55 | 55 | 55 | - |
Table 7
Dynamic processes of the 44-year-old standing trees of C. hystrix plantation vitality with different treatments"
处理时间 Treatment time /month | 立木活力状况 The vitality of standing trees |
0 | 所有处理树叶和树干活力均正常 The leaves and trunks of the trees showed normal vitality for all treatments |
5 | A处理树叶和树干未见异常,环剥处树皮修复约75%;B处理树叶脱落,树干枯死;对照处理树叶和树干正常 The leaves and trunk did not exhibit any abnormalities, and approximately 75% of the bark in the ring was repaired under treatment A. In treatment B, the leaves fell off and the trunk died. However, under CK treatment, both the leaves and trunk appeared normal |
8 | A处理树叶和树干未见异常,环剥处树皮修复约80%;B处理树叶脱落,树干枯死;对照处理树叶和树干正常 The leaves and trunk did not exhibit any abnormalities, and approximately 80% of the bark in the ring was repaired under treatment A. In treatment B, the leaves fell off and the trunk died. However, under CK treatment, both the leaves and trunk appeared normal |
10 | A处理树叶和树干未见异常,环剥处树皮修复约90%;B处理树叶脱落,树干枯死;对照处理树叶和树干正常 The leaves and trunk did not exhibit any abnormalities, and approximately 90% of the bark in the ring was repaired under treatment A. In treatment B, the leaves fell off and the trunk died. However, under CK treatment, both the leaves and trunk appeared normal |
13 | A处理树叶和树干未见异常,环剥处树皮修复约98%;B处理树叶脱落,树干枯死;对照处理树叶和树干正常 The leaves and trunk did not exhibit any abnormalities, and approximately 98% of the bark in the ring was repaired under treatment A. In treatment B, the leaves fell off and the trunk died. However, under CK treatment, both the leaves and trunk appeared normal |
刁海林, 蔡道雄, 唐继新, 等. 水浸时效对红锥锯材性能的影响. 中南林业科技大学学报, 2015, 35 (6): 103- 106, 113. | |
Diao H L, Cai D X, Tang J X, et al. Influence of water immersion ageing on properties of Castanopsis hystrix. Journal of Central South University of Forestry & Technology, 2015, 35 (6): 103- 106, 113. | |
甘剑伟, 刘达峰. 蒋燚: 规模发展红锥正当时. 广西林业, 2014, (2): 21.
doi: 10.3969/j.issn.1004-0390.2014.02.014 |
|
Gan J W, Liu D F. Jiang Yi: The scale development of Castanopsis hystrix is just in time. Forestry of Guangxi, 2014, (2): 21.
doi: 10.3969/j.issn.1004-0390.2014.02.014 |
|
蒋 燚, 李志辉, 朱积余, 等. 红锥家系木材密度等物理性状的遗传及变异性分析. 中南林业科技大学学报, 2012, 32 (11): 9- 13, 20. | |
Jiang Y, Li Z H, Zhu J Y, et al. Analysis on genetic and variability of wood density and other physical properties of Castanopsis hystrix family. Journal of Central South University of Forestry & Technology, 2012, 32 (11): 9- 13, 20. | |
刘晓丽. 2005. 人工林尾巨桉生长应变与木材性质关系及高生长应变形成机理的研究. 北京: 中国林业科学研究院. | |
Liu X L. 2005. Relationship between growth strain and wood properties and forming mechanism of high growth strain of Eucalyptus uropphylla × E. grandis plantation. Beijing: Chinese Academy of Forestry. [in Chinese] | |
栾 玉, 江梦虹, 杨雨婷, 等. 树木生长应力形成机理. 林业科学, 2024, 60 (10): 117- 126. | |
Luan Y, Jiang M H, Yang Y T, et al. Generation mechanisms of growth stress in trees. Scientia Silvae Sinicae, 2024, 60 (10): 117- 126. | |
吕建雄, 殷亚方, 赵有科, 等. 我国南方地区不同桉树人工林树种生长应变水平的评估. 北京林业大学学报, 2005, 27 (4): 69- 72.
doi: 10.3321/j.issn:1000-1522.2005.04.014 |
|
Lü J X, Yin Y F, Zhao Y K, et al. Growth strain evaluation in different species of Eucalyptus plantation in south China. Journal of Beijing Forestry University, 2005, 27 (4): 69- 72.
doi: 10.3321/j.issn:1000-1522.2005.04.014 |
|
胡继青, 姜笑梅, 侯祝强, 等. 三种人工林桉树轴向生长应变变异初探. 木材工业, 2000, 14 (6): 9- 11. | |
Hu J Q, Jiang X M, Hou Z Q, et al. A preliminary study on variance of longitudinal growth strains in tree trunk of three plantation eucalyptuses. China Wood Industry, 2000, 14 (6): 9- 11. | |
刘小金, 徐大平. 广东省珍贵树种资源分布特点、产业现状与发展建议. 广东农业科学, 2021, 48 (7): 57- 65. | |
Liu X J, Xu D P. Characteristics of resource distribution, industry status and development proposal of precious tree species in Guangdong. Guangdong Agricultural Sciences, 2021, 48 (7): 57- 65. | |
秦 莉, 赵有科, 黄荣凤, 等. 8年生粗皮桉生长应变及生长遗传变异. 中南林业科技大学学报, 2008, 28 (1): 58- 63.
doi: 10.3969/j.issn.1673-923X.2008.01.021 |
|
Qin L, Zhao Y K, Huang R F, et al. Genetic variation of growth strains and growth of 8-year-old Eucalyptus pellita. Journal of Central South University of Forestry & Technology, 2008, 28 (1): 58- 63.
doi: 10.3969/j.issn.1673-923X.2008.01.021 |
|
王少杰, 严铭海, 黄清麟, 等. 环剥研究综述. 世界林业研究, 2023, 36 (6): 38- 44. | |
Wang S J, Yan M H, Huang Q L, et al. Research on girdling: a review. World Forestry Research, 2023, 36 (6): 38- 44. | |
吴建宇. 植物生长调节剂对山牡荆扦插生根及生理变化的影响. 森林工程, 2023, 39 (3): 49- 56. | |
Wu J Y. Effects of plant growth regulator on rooting and physiology of Vitex quinata. Forest Engineering, 2023, 39 (3): 49- 56. | |
殷 鑫, 孟兆新, 宋绪秋, 等. 木材横向切断性能螺旋管胞模拟研究. 森林工程, 2023, 39 (4): 86- 92. | |
Yin X, Meng Z X, Song X Q, et al. Helical tracheid simulation study of wood transverse cutting performance. Forest Engineering, 2023, 39 (4): 86- 92. | |
周 亮, 刘盛全, 刘 倩, 等. 欧美杨107杨立木生长应变分布规律. 林业科学, 2009, 45 (1): 118- 124.
doi: 10.3321/j.issn:1001-7488.2009.01.022 |
|
Zhou L, Liu S Q, Liu Q, et al. Distribution pattern of growth strain of poplar 107 clone tree (Populus × euramericana cv. Neva). Scientia Silvae Sinicae, 2009, 45 (1): 118- 124.
doi: 10.3321/j.issn:1001-7488.2009.01.022 |
|
周 亮, 刘盛全, 朱永侠, 等. 马尾松生长性状与生长应力的关系. 林业科学, 2008, 44 (6): 101- 108.
doi: 10.3321/j.issn:1001-7488.2008.06.018 |
|
Zhou L, Liu S Q, Zhu Y X, et al. Relationship between growth traits and growth stress of Masson pine. Scientia Silvae Sinicae, 2008, 44 (6): 101- 108.
doi: 10.3321/j.issn:1001-7488.2008.06.018 |
|
Aggarwal P, Chauhan S. Longitudinal growth strains in five clones of Eucalyptus tereticornis Sm. Journal of Forestry Research, 2013, 24 (2): 339- 343.
doi: 10.1007/s11676-013-0358-5 |
|
Amer M, Kabouchi B, Rahouti M, et al. Determination of growth stresses indicator, moisture profiles and basic density of clonal Eucalyptus wood. Journal of the Indian Academy of Wood Science, 2017, 14 (1): 91- 98.
doi: 10.1007/s13196-017-0192-z |
|
Biechele T, Nutto L, Becker G. Growth strain in Eucalyptus nitens at different stages of development. Silva Fennica, 2009, 43 (4): 669- 679. | |
Dassot M, Constant T, Ningre F, et al. Impact of stand density on tree morphology and growth stresses in young beech (Fagus sylvatica L. ) stands. Trees, 2015, 29 (2): 583- 591.
doi: 10.1007/s00468-014-1137-4 |
|
França F J N , Frana T S F A , Vidaurre G B. 2020. Effect of growth stress and interlocked grain on splitting of seven different hybrid clones of Eucalyptus grandis×Eucalyptus urophylla wood. Holzforschung, 74(10): 917−926. | |
Gilbero D M, Abasolo W P, Matsuo-Ueda M, et al. Surface growth stress and wood properties of 8-year-old planted Big-leaf mahogany (Swietenia macrophylla King) from different Landrace provenances and trial sites in the Philippines. Journal of Wood Science, 2019, 65 (1): 35.
doi: 10.1186/s10086-019-1814-4 |
|
Gril J, Jullien D, Bardet S, et al. Tree growth stress and related problems. Journal of Wood Science, 2017, 63 (5): 411- 432.
doi: 10.1007/s10086-017-1639-y |
|
Jullien D, Widmann R, Loup C, et al. Relationship between tree morphology and growth stress in mature European beech stands. Annals of Forest Science, 2013, 70 (2): 133- 142.
doi: 10.1007/s13595-012-0247-7 |
|
Kojima M, Yamamoto H, Okumura K, et al. Effect of the lateral growth rate on wood properties in fast-growing hardwood species. Journal of Wood Science, 2009, 55 (6): 417- 424.
doi: 10.1007/s10086-009-1057-x |
|
Kojima M, Yamamoto H, Saegusa K, et al. Anatomical and chemical factors affecting tensile growth stress in Eucalyptus grandis plantations at different latitudes in Brazil. Canadian Journal of Forest Research, 2012, 42 (1): 134- 140.
doi: 10.1139/x11-161 |
|
Laurila J, Lauhanen R, Hakonen T. The effect of girdling on the moisture content of small-sized trees. Scandinavian Journal of Forest Research, 2014, 29, (3): 259- 265. | |
Li J Y, Liu S Q, Zhou L, et al. Growth strain in straight and inclined Populus × euramericana cv. ‘74/76’ trees, and its relationship with selected wood properties. European Journal of Wood and Wood Products, 2018, 76 (6): 1715- 1723.
doi: 10.1007/s00107-018-1333-9 |
|
Mattheck C, Kubler H. 1997. Wood - the internal optimization of trees. Springer, Berlin Heidelberg, 63−89. | |
Naghizadeh Z, Wessels C B. The effect of water availability on growth strain in Eucalyptus grandis-urophylla trees. Forest Ecology and Management, 2021, 483, 118926.
doi: 10.1016/j.foreco.2021.118926 |
|
Nicholson J E. Growth stress differences in eucalypts. Forest Science, 1973, 19 (3): 169- 174. | |
Zhang H, Guo M Q, Wu Q N, et al. Efficient regeneration of mature Castanopsis hystrix from in vitro stem explants. Frontiers in Plant Science, 2022, 13, 914652.
doi: 10.3389/fpls.2022.914652 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||