|
方精云. 中国森林生产力及其对全球气候变化的响应. 植物生态学报, 2000, 24 (5): 513- 517.
doi: 10.3321/j.issn:1005-264X.2000.05.001
|
|
Fang J Y. Forest productivity in China and its response to global climate change. Chinese Journal of Plant Ecology, 2000, 24 (5): 513- 517.
doi: 10.3321/j.issn:1005-264X.2000.05.001
|
|
金栋梁, 刘予伟. 森林水文效应的综合分析. 水资源与水工程学报, 2013, 24 (2): 138- 144.
|
|
Jin D L, Liu Y W. Synthetical analysis of hydrological efficiency on forest cover. Journal of Water Resources and Water Engineering, 2013, 24 (2): 138- 144.
|
|
牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望. 植物生态学报, 2020, 44 (5): 449- 460.
doi: 10.17521/cjpe.2019.0355
|
|
Niu S L, Chen W N. Global change and ecosystems research progress and prospect. Chinese Journal of Plant Ecology, 2020, 44 (5): 449- 460.
doi: 10.17521/cjpe.2019.0355
|
|
齐建东, 谭新新. 长白山红松阔叶林的净碳交换变化及基于时间卷积神经网络的模拟. 林业科学, 2022, 58 (2): 1- 12.
|
|
Qi J D, Tan X X. Net carbon exchange of the forest of Korean pine and broad leaved forest trees in Changbai Mountain and its simulation based on temporal convolutional network. Scientia Silvae Sinicae, 2022, 58 (2): 1- 12.
|
|
尹伟伦. 全球森林与环境关系研究进展. 森林与环境学报, 2015, 35 (1): 1- 7.
|
|
Yin W L. Advances in the relationship between forest and environment in the world. Journal of Forest and Environment, 2015, 35 (1): 1- 7.
|
|
Bahn M, Reichstein M, Guan K, et al. Preface: climate extremes and biogeochemical cycles in the terrestrial biosphere: impacts and feedbacks across scales. Biogeosciences, 2015, 12 (15): 4827- 4830.
doi: 10.5194/bg-12-4827-2015
|
|
Beer C, Ciais P, Reichstein M, et al. Temporal and among–site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 2009, 23 (2): 38- 44.
|
|
Fu Z, Ciais P, Prentice I C, et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nature Communications, 2022, 13 (1): 989.
doi: 10.1038/s41467-022-28652-7
|
|
Gao Y, Zhu X J, Yu G R, et al. Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agricultural and Forest Meteorology, 2014, 195 (7): 32- 37.
|
|
Hikosaka K, Ishikawa K, Borjigidai A, et al. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 2006, 57 (2): 291- 302.
doi: 10.1093/jxb/erj049
|
|
Hmimina G, Dufrêne E, Pontailler J Y, et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground–based NDVI measurements. Remote Sensing of Environment, 2013, 132 (3): 145- 158.
|
|
Huang M T, Piao S L, Sun Y, et al. Change in terrestrial ecosystem water–use efficiency over the last three decades. Global Change Biology, 2015, 21 (6): 2366- 2378.
doi: 10.1111/gcb.12873
|
|
Keenan T F, Gray J, Friedl M A, et al. Net carbon uptake has increased through warming–induced changes in temperate forest phenology. Nature Climate Change, 2014, 4 (4): 598- 604.
|
|
Li D, Sun T, Liu M F, et al. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environmental Research Letters, 2015, 10 (5): 054009.
doi: 10.1088/1748-9326/10/5/054009
|
|
Niu S L, Xing X R, Zhang Z, et al. Water–use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Global Change Biology, 2011, 17 (2): 1073- 1082.
doi: 10.1111/j.1365-2486.2010.02280.x
|
|
Ponce–Campos G E, Moran M S, Huete A, et al. Ecosystem resilience despite large–scale altered hydroclimatic conditions. Nature, 2013, 494 (9): 349- 352.
|
|
Wagle P, Kakani V G. Confounding effects of soil moisture on the relationship between ecosystem respiration and soil temperature in switchgrass. Bioenergy Research, 2014, 7 (3): 789- 798.
doi: 10.1007/s12155-014-9434-8
|
|
Zhou J, Zhang Z Q, Sun G, et al. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China. Forest Ecology and Management, 2013, 300 (5): 33- 42.
|