Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (12): 111-119.doi: 10.11707/j.1001-7488.LYKX20230511
Previous Articles Next Articles
Xiaoxiao Li,Fengjun Zhao*(),Lifu Shu,Mingyu Wang,Liqing Si,Weike Li,Nuanyang Zhou,Wei Li,Kaida Yan
Received:
2023-10-21
Online:
2024-12-25
Published:
2025-01-02
Contact:
Fengjun Zhao
E-mail:.zhaofj@caf.ac.cn
CLC Number:
Xiaoxiao Li,Fengjun Zhao,Lifu Shu,Mingyu Wang,Liqing Si,Weike Li,Nuanyang Zhou,Wei Li,Kaida Yan. Content and Composition of Volatile Oils in Fresh Needles of Pinus yunnanensis and Their Volatilization Characteristics under Simulated Forest Fire Preheating Conditions[J]. Scientia Silvae Sinicae, 2024, 60(12): 111-119.
Table 1
Basic characteristics of the three sampling plots"
样地 Plot | 坡度 Slope/° | 海拔 Altitude/m | 坡向 Aspect | 密度 Density/(tree?hm?2) | 平均树高 Average height/m | 平均胸径 Average DBH/cm | 郁闭度 Canopy density | 灌草盖度 Coverage degree (%) |
P1 | 15 | 2 048 | 东北Northeast | 2 200 | 12.8 | 13.5 | 0.4 | 47 |
P2 | 10 | 2 032 | 东北Northeast | 900 | 12.8 | 21.4 | 0.3 | 69 |
P3 | 21 | 1 996 | 东北Northeast | 1 900 | 18.4 | 17.8 | 0.5 | 71 |
Table 2
Contents of volatile oil of P. yunnanensis needles"
编号 No. | 样品质量 Samples weight/g | 绝对含水率 Absolute moisture content (%) | 挥发油体积 Volatile oil volume/mL | 挥发油质量 Volatile oil mass/g | 挥发油体积含量 Volume content/ (mL?kg?1) | 挥发油质量含量 Mass content/ (g?kg?1) |
1 | 80.9 | 56.07 | 0.55 | 0.407 6 | 10.61 | 7.86 |
2 | 81.0 | 19.03 | 1.05 | 0.662 6 | 15.43 | 9.74 |
3 | 71.3 | 19.03 | 0.80 | 0.476 9 | 13.36 | 7.96 |
平均值±标准差(mean±SD) | 13.13±2.42 | 8.52±1.05 |
Table 3
Compounds of volatile oil of P. yunnanensis needles under preheating at 150 ℃ for 15 min"
编号 NO. | 保留时间 Retention time/min | 分子式 Molecular formula | 化合物Compounds | 正向匹配度 Match | 反向匹配度 Reverse match | 相对含量 Relative content (%) |
1 | 6.025 | C5H4O2 | 3-糠醛3-Furaldehyde | 894 | 904 | 0.40 |
2 | 8.743 | C10H16 | 三环烯Tricyclene | 914 | 915 | 1.07 |
3 | 9.324 | C10H16 | α-蒎烯α-Pinene | 927 | 927 | 33.78 |
4 | 9.632 | C10H16 | 莰烯Camphene | 947 | 947 | 2.91 |
5 | 10.552 | C10H16 | β-蒎烯β-Pinene | 924 | 924 | 8.81 |
6 | 11.043 | C10H16 | β-月桂烯β-Myrcene | 946 | 960 | 2.56 |
7 | 12.028 | C10H16 | D-柠檬烯D-Limonene | 921 | 921 | 3.98 |
8 | 13.147 | C10H16 | γ-松油烯γ-Terpinene | 913 | 918 | 0.36 |
9 | 14.072 | C10H16 | 松油烯Terpinolene | 871 | 888 | 1.23 |
10 | 14.433 | C12H20O2 | 乙酸芳樟酯Linalyl acetate | 886 | 891 | 0.41 |
11 | 17.149 | C10H18O | α-松油醇α-Terpineol | 895 | 917 | 0.36 |
12 | 19.932 | C12H20O2 | 醋酸冰片酯Bornyl acetate | 937 | 938 | 0.60 |
13 | 22.070 | C15H24 | α-荜澄茄烯α-Cubebene | 922 | 937 | 0.90 |
14 | 22.850 | C15H24 | 古巴烯Copaene | 919 | 922 | 0.82 |
15 | 23.106 | C15H24 | β-波旁烯β-Bourbonene | 851 | 854 | 0.44 |
16 | 23.308 | C15H24 | β-榄香烯β-Elemene | 908 | 911 | 2.62 |
17 | 24.059 | C15H24 | 石竹烯Caryophyllene | 947 | 947 | 8.01 |
18 | 24.478 | C15H24 | 芳香树烯Aromandendrene | 921 | 925 | 0.47 |
19 | 24.825 | C15H24 | 蛇麻烯Humulene | 901 | 917 | 1.77 |
20 | 25.027 | C15H24 | 双环倍半叶草烯Bicyclosesquiphellandrene | 896 | 897 | 0.73 |
21 | 25.475 | C15H24 | β-古巴烯β-Copaene | 938 | 939 | 7.41 |
22 | 25.561 | C15H24 | β-芹子烯β-Selinene | 933 | 948 | 0.51 |
23 | 25.821 | C15H24 | α-穆勒烯α-Muurolene | 947 | 950 | 1.18 |
24 | 26.120 | C15H24 | (-)-γ-杜松烯(-)-γ-Cadinene | 947 | 948 | 2.31 |
25 | 26.303 | C15H24 | (+)-δ-杜松烯(+)-δ-Cadinene | 894 | 894 | 4.25 |
26 | 26.563 | C15H24 | α-杜松烯α-Cadinene | 918 | 933 | 0.44 |
27 | 28.634 | C15H26O | τ-荜澄茄醇τ-Cadinol | 888 | 894 | 0.83 |
Table 4
Peak area ratio of α-pinene volatilize from P. yunnanensis needles under different preheating conditions (%)"
预热温度 Preheating temperature/℃ | 预热时间Preheating time/min | ||||
5 | 15 | 30 | 45 | 60 | |
50 | 8.8 | 9.4 | 10.9 | 12.3 | 14.2 |
75 | 17.1 | 18.6 | 22.4 | 23.1 | 25.1 |
100 | 26.0 | 38.5 | 48.0 | 55.5 | 63.6 |
125 | 50.1 | 78.5 | 87.5 | 90.0 | 89.2 |
150 | 72.0 | 89.4 | 88.5 | 89.7 | — |
175 | 81.0 | 100 | — | — | — |
陈敏斯, 杜建华, 王 薇, 等. 八达岭林场油松林冠层可燃物特征及潜在火行为. 北京林业大学学报, 2022, 44 (3): 55- 64. | |
Chen M S, Du J H, Wang W, et al. Characteristics and potential fire behavior of combustibles in the canopy of Pinus tabuliformis forest in Badaling Forest Farm of Beijing. Journal of Beijing Forestry University, 2022, 44 (3): 55- 64. | |
高仲亮, 魏建珩, 龙腾腾, 等. 气候变化背景下云南松林火灾害的响应规律研究. 西部林业科学, 2021, 50 (1): 12- 18. | |
Gao Z L, Wei J H, Long T T, et al. Response law of forest fire disasters of Pinus yunnanensis under of climate change. Journal of West China Forestry Science, 2021, 50 (1): 12- 18. | |
蒋泽艳. 2022. 云南松针叶可燃性的生态分化与适应意义研究. 昆明: 云南大学. | |
Jiang Z Y. 2022. Ecological differentiation and adaptation significance of flammability of needles in Pinus yunnanensis. Kunming: Yunnan University. [in Chinese] | |
李笑笑, 赵凤君, 王明玉, 等. 林火爆燃机理研究进展. 陆地生态系统与保护学报, 2022, 2 (2): 55- 61. | |
Li X X, Zhao F J, Wang M Y, et al. Review on mechanisms of eruptive forest fire. Terrestrial Ecosystem and Conservation, 2022, 2 (2): 55- 61. | |
满子源, 孙 龙, 胡海清, 等. 南方8种森林地表死可燃物在平地无风时的燃烧蔓延速率与预测模型. 林业科学, 2019, 55 (7): 197- 204. | |
Man Z Y, Sun L, Hu H Q, et al. Prediction model of the spread rate of eight typical surface dead fuel in southern China under windless and flat land. Scientia Silvae Sinicae, 2019, 55 (7): 197- 204. | |
师彦平. 2008. 单萜和倍半萜化学. 北京: 化学工业出版社, 44–54, 58. | |
Shi Y P. 2008. Monoterpene and sesquiterpene chemistry. Beijing: Chemical Industry Press, 44–54, 58. [in Chinese] | |
舒立福, 刘晓东. 2016. 森林防火学概论. 北京: 中国林业出版社, 21–22. | |
Shu L F, Liu X D. 2016. Introduction to forest fire prevention. Beijing: China Forestry Press, 21–22. [in Chinese] | |
苏文静, 张思玉, 陈戈萍, 等. 基于热重-红外联用技术的杉木林下可燃物热解和燃烧烟气成分分析. 西北林学院学报, 2018, 33 (6): 159- 163.
doi: 10.3969/j.issn.1001-7461.2018.06.26 |
|
Su W J, Zhang S Y, Chen G P, et al. Pyrolysis and combustion smoke components in Chinese fir forest under thermal gravimetric coupled infrared spectroscopy. Journal of Northwest Forestry University, 2018, 33 (6): 159- 163.
doi: 10.3969/j.issn.1001-7461.2018.06.26 |
|
孙 龙, 刘 祺, 胡同欣. 森林地表死可燃物含水率预测模型研究进展. 林业科学, 2021, 57 (4): 142- 152. | |
Sun L, Liu Q, Hu T X. Advances in research on prediction model of moisture content of surface dead fuel in forests. Scientia Silvae Sinicae, 2021, 57 (4): 142- 152. | |
王 兵. 2020. 云南松(Pinus yunnanensis)凋落叶分解过程中养分及燃烧性变化. 昆明: 云南大学. | |
Wang B. 2020. Changes of nutrient and flammability during the decomposition of leaf litters of Pinus yunnanensis. Kunming: Yunnan University. [in Chinese] | |
王秋华, 李 伟, 刘世远, 等. 滇中昆明地区森林火灾的火环境研究. 江西农业大学学报, 2015, 37 (1): 108- 113.
doi: 10.3969/j.issn.1000-2286.2015.01.018 |
|
Wang Q H, Li W, Liu S Y, et al. A study on the fire environment of forest fire in Kunming area. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37 (1): 108- 113.
doi: 10.3969/j.issn.1000-2286.2015.01.018 |
|
王新然, 辛 颖. 红松热解特性及动力学实验研究. 消防科学与技术, 2019, 38 (7): 928- 932.
doi: 10.3969/j.issn.1009-0029.2019.07.007 |
|
Wang X R, Xin Y. Experimental study on pyrolysis characteristics and kinetics of Pinus koraiensis. Fire Science and Technology, 2019, 38 (7): 928- 932.
doi: 10.3969/j.issn.1009-0029.2019.07.007 |
|
张鹏云, 管 维, 李 蓉, 等. 顶空-固相微萃取法与水蒸气蒸馏法提取山银花挥发性组分的比较. 食品科学, 2020, 41 (4): 178- 184. | |
Zhang P Y, Guan W, Li R, et al. Comparison of volatile components from Flos lonicerae extracted by headspace solid phase microextraction and steam distillation. Food Science, 2020, 41 (4): 178- 184. | |
张文文, 闫想想, 王秋华, 等. 计划烧除对云南松林地表可燃物火行为的影响. 北京林业大学学报, 2022, 44 (5): 69- 76. | |
Zhang W W, Yan X X, Wang Q H, et al. Effects of prescribed burning on fire behavior of surface fuel in Pinus yunnanensis forest land. Journal of Beijing Forestry University, 2022, 44 (5): 69- 76. | |
赵学丽, 舒 钰, 高子为. 水蒸气蒸馏法提取红松松针挥发油研究. 安徽农业科学, 2019, 47 (2): 167- 168, 175. | |
Zhao X L, Shu Y, Gao Z W. Extracting technology of volatile oil from the pine needle of Pinus koraiensis by steam distillation. Journal of Anhui Agricultural Sciences, 2019, 47 (2): 167- 168, 175. | |
周涧青, 李晨韵, 刘晓东, 等. 不同季节马尾松针叶热解的热红联用分析. 消防科学与技术, 2018, 37 (11): 1504- 1506. | |
Zhou J Q, Li C Y., Liu X D, et al. Pyrolysis process analysis on leaves of Pinus massoniana forest in different seasons by TG-FTIR. Fire Science and Technology, 2018, 37 (11): 1504- 1506. | |
Chen F, Si L Q, Zhao F J, et al. Volatile oil in Pinus yunnanensis potentially contributes to extreme fire behavior. Fire, 2023, 6 (3): 113.
doi: 10.3390/fire6030113 |
|
Finney M A, Cohen J D, Forthofer J M, et al. Role of buoyant flame dynamics in wildfire spread. Proceedings of the National Academy of Sciences, 2015, 112 (32): 9833- 9838.
doi: 10.1073/pnas.1504498112 |
|
McCandless T C, Kosovic B, Petzke W. Enhancing wildfire spread modelling by building a gridded fuel moisture content product with machine learning. Machine Learning: Science and Technology, 2020, 1 (3): 35010.
doi: 10.1088/2632-2153/aba480 |
|
Oliveira U, Soares-Filho B, de Souza Costa W L, et al. Modeling fuel loads dynamics and fire spread probability in the Brazilian Cerrado. Forest Ecology and Management, 2021, 482, 118889.
doi: 10.1016/j.foreco.2020.118889 |
|
Omi P N. Forest fires: a reference handbook. Santa Barbara, 2005, California, ABC- CLIO, 119–123. | |
Silvani X, Morandini F, Muzy J. Wildfire spread experiments: fluctuations in thermal measurements. International Communications in Heat and Mass Transfer, 2009, 36 (9): 887- 892.
doi: 10.1016/j.icheatmasstransfer.2009.06.008 |
|
Viegas D X, Simeoni A. Eruptive behaviour of forest fires. Fire Technology, 2021, 47 (2): 303- 320. | |
Yaws C. 1999. Chemical properties handbook: physical, thermodynamic, environmental, transport, safety, and health related properties for organic and inorganic chemicals. New York: McGraw-Hill, 214. |
[1] | Xiwei Shen,Bin Zeng,Mengting Ge,Jingxian Wang. Analysis of Odor-Active Compounds from Pinus massoniana as Materials in Landscape Design Based on GC-MS-O Technology [J]. Scientia Silvae Sinicae, 2024, 60(9): 159-169. |
[2] | Yuanxi Liu,Lina Wang,Junwen Wu,Shimin Li. Non-Structural Carbohydrate and Biomass Characteristics of Pinus yunnanensis Seedlings under Continuous Drought Stress [J]. Scientia Silvae Sinicae, 2024, 60(6): 71-85. |
[3] | Jiayan Shen,Zexin Fan,Hui Zhang,Xinhua Peng,Jinhua Li,Xiao Yu,Wenxiong Yang,Yunfang Li,Xinyu Li,Yuening Liu,Jianrong Su. Response Heterogeneity of Radial Growth of the Three Pine Species to Climate Factors in Yunnan Province [J]. Scientia Silvae Sinicae, 2024, 60(11): 48-62. |
[4] | Xiaoliang Che,Tianyi Liu,Zhe Wang,Ming Zeng,Quannian Li,Fencheng Zhao,Huishan Wu,Wenbing Guo. Effect of Different Stimulating Pastes on Oleoresin Yield of the Hybrid Pine (Pinus elliottii × P. caribaea) Plantation in Guangdong Province [J]. Scientia Silvae Sinicae, 2023, 59(8): 123-132. |
[5] | Lihua Qi,Xianwu Zou,Bin Lü,Yuejin Fu,Lina Tang,Liming Zhu,Qian Chen,Bo Liu,Botao Li. VOCs Composition and Odor Characteristics of Main Plantation Wood in China [J]. Scientia Silvae Sinicae, 2023, 59(11): 103-117. |
[6] | Liuhui Zheng,Yu Hou,Xinfeng Zhang,Weiwu Yu,Yanru Zeng,Wensheng Dai. Changes of Volatile Oil Composition in Aril during the Growth and Development of Torreya grandis 'Merrillii' Seeds [J]. Scientia Silvae Sinicae, 2022, 58(11): 127-136. |
[7] | Jinmei Yuan,Jing Luo,Linlin Zhu,Wan Xi,Xumei Zeng,Kangshun Xiong,Caiyun Wang,Riru Zheng. Free and Glycosylated Aroma Components in Petals of Three Osmanthus fragrans Cultivars [J]. Scientia Silvae Sinicae, 2021, 57(8): 33-42. |
[8] | Dongshan Wu,Jie Jia,Hu Chen,Peidong Yan,Rongxun Xu,Liuqin Yang,Zhangqi Yang. Analysis of Induced Resistant Volatile Compounds in Pinus yunnanensis var. tenuifolia Damaged by Tomicus minor (Coleoptera: Scolytidae)by HS-SPME-GC/MS Method [J]. Scientia Silvae Sinicae, 2021, 57(6): 103-110. |
[9] | Bin Zeng,Jun Shen,Qifan Wang,Huajun Dong. Analysis of Odorants in Cinnamomum burmannii Wood with Different Moisture Contents [J]. Scientia Silvae Sinicae, 2021, 57(4): 133-141. |
[10] | Yuan Chen,Tingting Yan,Sheng Yang,Zongying Fu,Gaiyun Li,Haiqing Ren. Extractive Chemical Components of Quercus variabilis and Quercus acutissima [J]. Scientia Silvae Sinicae, 2021, 57(4): 191-198. |
[11] | Haili Guo,Jihong Li,Qin Li,Xiuhua Song,Xuejian Li,Jiageng Liu,Ruyue Wang,Lili Hou,Jinnan Wang. Flower Morphology and Spatiotemporal Dynamics of Aroma Components in Chionanthus retusus [J]. Scientia Silvae Sinicae, 2021, 57(10): 81-92. |
[12] | Jiayan Shen,Shuaifeng Li,Xiaobo Huang,Shaowu Wang,Jianrong Su. Ecological Resilience and Growth Degradation of Pinus yunnanensis at Different Altitudes in Jinsha River Basin [J]. Scientia Silvae Sinicae, 2020, 56(6): 1-11. |
[13] | Qifan Wang,Jun Shen,Bin Zeng,Huiyu Wang,Tianyu Cao,Huajun Dong. VOCs and Odor Emission from Lacquer Veneer Particleboards [J]. Scientia Silvae Sinicae, 2020, 56(5): 130-142. |
[14] | Wang Jun, Wang Yuguang, Yang Jinling, Li Wei, Dong Wenhua, Mei Wenli, Dai Haofu. Comparison of the Anatomy Structure and Chemical Compositions of Agarwoods from Two Kinds of Aquilaria sinensis [J]. Scientia Silvae Sinicae, 2019, 55(7): 146-154. |
[15] | Li Yang, Xu Feiyun. Acoustic Emission Signal Characteristics of Pinus yunnanensis with Different Moisture Content [J]. Scientia Silvae Sinicae, 2019, 55(6): 96-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||